Dynamical Meteorology and Climatology Unit
MAOOAM
The Modular Arbitrary-Order Ocean-Atmosphere Model: A coupled ocean-atmosphere model to explore the impact of such coupling on the atmosphere variability.
The atmospheric component of the model is based on the papers of Charney and Straus (1980), Reinhold and Pierrehumbert (1982) and Cehelsky and Tung (1987), all published in the Journal of Atmospheric Sciences. The ocean component is based on the papers of Pierini (2012), Barsugli and Battisti (1998). The coupling between the two components includes wind forcings, radiative and heat exchanges.
Documentation is included with the code.
Reference
-
Charney, J. G. and Straus, D. M.: Form-drag instability, multiple equilibria and propagating planetary waves in baroclinic, orographically forced, planetary wave systems, J. Atmos. Sci., 37, 1157-1176, 1980.
-
Reinhold, B. B. and Pierrehumbert, R. T.: Dynamics of weather regimes: quasi-stationary waves and blocking, Mon. Weather Rev., 110, 1105-1145, 1982.
-
Reinhold, B. B. and Pierrehumbert, R. T.: Corrections to "Dynamics of weather regimes: quasi-stationary waves and blocking", Mon. Weather Rev., 113, 2055-2056, 1985.
-
Barsugli, J. J. and Battisti, D. S.: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability, J. Atmos. Sci., 55, 477-493, 1998.
-
Pierini, S.: Low-frequency variability, coherence resonance, and phase selection in a low-order model of the wind-driven ocean circulation, J. Phys. Oceanogr., 41, 1585-1604, 2011.
-
Cehelsky, P. and Tung, K. K.: Theories of multiple equilibria and weather regimes - A critical reexamination. Part II: Baroclinic two-layer models, Journal of the atmospheric sciences, 44, 3282-3303, 1987.
-
Vannitsem, S. and De Cruz, L.: A 24-variable low-order coupled ocean-atmosphere model: OA-QG-WS v2, Geoscientific Model Development, 7, 649-662, 2014.
-
Vannitsem, S., Demaeyer, J., De Cruz, L., and Ghil, M.: Low-frequency variability and heat transport in a loworder nonlinear coupled ocean-atmosphere model, Physica D: Nonlinear Phenomena, 309, 71-85, 2015.