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Abstract. The statistical and dynamical properties of bias
correction and linear post-processing are investigated when
the system under interest is affected by model errors and is
experiencing parameter modifications, mimicking the poten-
tial impact of climate change. The analysis is first performed
for simple typical scalar systems, an Ornstein-Uhlenbeck
process (O-U) and a limit point bifurcation. It reveals sys-
tem’s specific (linear or non-linear) dependences of biases
and post-processing corrections as a function of parameter
modifications. A more realistic system is then investigated, a
low-order model of moist general circulation, incorporating
several processes of high relevance in the climate dynam-
ics (radiative effects, cloud feedbacks...), but still sufficiently
simple to allow for an extensive exploration of its dynamics.
In this context, bias or post-processing corrections also dis-
play complicate variations when the system experiences tem-
perature climate changes up to a few degrees. This precludes
a straightforward application of these corrections from one
system’s state to another (as usually adopted for climate pro-
jections), and increases further the uncertainty in evaluating
the amplitudes of climate changes.

1 Introduction

Long term measurement environmental records indicate that
climate is experiencing modifications on a wide variety of
time and space scales. Under this changing environment, one
can wonder whether how predictable is the system. In this
context, two types of questions arise: (i) what are the mod-
ifications of the statistical and dynamical properties of the
system under slow variations of its forcings, usually referred
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as system’s sensitivity, and (ii) can we predict the slow mod-
ifications of the system.

If the model at hand representing the dynamics of real-
ity is good enough and if we have a good knowledge about
the uncertainty in the forcings and in the initial conditions,
one could imagine to perform projections to get a reliable
estimate of the possible outcomes. However models are al-
ways affected bymodel errors, increasing the uncertainty
on the possible outcome (see e.g. Stainforth et al., 2007;
Knutti et al., 2008), in particular in case of (non-linear) sys-
tems that could experience catastrophic changes (i.e. bifur-
cations). These errors may indeed considerably affect the
specific structure of the system’s attractor and of its bifur-
cation diagram. Their presence is amply demonstrated by
the difficulty of atmospheric models in reproducing correctly
the climate, as illustrated by the robust systematic errors that
are still present in the climate of state-of-the-art models (e.g.
Berner et al., 2008).

In order to partly correct the impact of these model errors,
post-processing techniques are used. One of the most simple
approach often used in the climate community is to remove
the systematic errors, and to work with anomalies instead of
absolute values (e.g. Solomon et al., 2007). More sophisti-
cated approaches consist in correcting higher order moments,
usually the second one, in order to reproduce the variabil-
ity of the observation field as often used for the correction
of weather forecasts (Johnson and Swinbank, 2009; Vannit-
sem, 2009; Glahn et al., 2009; Van Schaeybroeck and Vannit-
sem, 2011), or to apply downscaling schemes producing an
additional variability at smaller scales (e.g. Benestad et al.,
2008). But one of the main assumptions behind these differ-
ent approaches are the stationarity of the correction param-
eters. The reduction of performances associated with non-
stationarity of regression relationships has been discussed
notably in Schmith (2008) in the context of downscaling of
European winter temperatures and precipitation.
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One can therefore wonder whether this type of post-
processing can still be used in the context of a transient cli-
mate, in particular in the context of decadal forecasts. The
obvious answer would be no in a strict sense since modifica-
tions of external parameters generically imply modifications
of the variability of the system. But in view of the strong ne-
cessity and pressure in getting answers on the potential im-
pact of climate changes on our society, these post-processing
are used assuming that the impact of model errors is the same
before and after the climate change, or is varying linearly
in time (Buser et al., 2009). An interesting attempt in un-
derstanding the dependence of the bias on the temperature
and precipitation amplitudes has been performed by Chris-
tensen et al. (2008) in the context of current climate simu-
lations. This experiment, although not realistic since it does
not compare biases before and after climate change, has en-
lightened the possible nonlinear character of the model bi-
ases as a function of increasing temperatures or precipitation
amounts.

In the present work, the statistical and dynamical proper-
ties of bias correction and linear post-processing, in the pres-
ence of model errors, are investigated when the system under
interest is experiencing parameter modifications, mimicking
the potential impact of climate change. The sources of model
errors are restricted here to parametric errors. Section 2 is
devoted to the analysis of simple typical scalar systems, an
Ornstein-Uhlenbeck process (O-U) and a limit point bifur-
cation (both paradigms of important processes acting in the
atmosphere and climate). The analysis reveals (potentially)
complicate dependences of biases and post-processing cor-
rections under parameter evolution. The investigation of a
more realistic system, the low-order model of moist general
circulation developed by Lorenz (1984) briefly described in
the Appendix, also supports this statement (Sect. 3). This
system is incorporating several processes of high relevance in
the climate dynamics (radiative effects, cloud feedbacks...),
but is still sufficiently simple to allow for an extensive ex-
ploration of its dynamics. The conclusions are then drawn in
Sect. 4.

2 Post-processing in scalar systems

2.1 Bias correction

Bias correction is certainly the simplest approach to post-
process weather forecasts or climate runs. It simply consists
in removing the mean of an ensemble of previous forecasts
from current forecasts or of long climate runs. How this bias
is affected by climate modifications is the central question of
this section in the context of scalar systems.

2.1.1 Ornstein-Uhlenbeck process

Let us consider first the case where the real dynamics and its
model are described by Ornstein-Uhlenbeck processes,

dx

dt
= −λx+K+ξ (1)

dy

dt
= −λ′y+K ′

+ξ ′ (2)

whereξ andξ ′ are white noise processes such that

<ξ(t)> = <ξ ′(t)>= 0

<ξ(t)ξ(t ′)> = Q2δ(t− t ′)

< ξ ′(t)ξ ′(t ′)> = Q′2δ(t− t ′)

where< .> refers to an ensemble average. The evolution of
the probability densities of the solutions of these equations is
described by a Fokker-Planck equation and the moments of
the distribution can then be evaluated (e.g. Gardiner, 1985).
Let us focus first on the properties of the first moments,

d <x >

dt
= −λ<x >+K (3)

d <y >

dt
= −λ′<y >+K ′ (4)

Assume furthermore that the parameterK is constant and
identical toK ′. The asymptotic stationary solutions are then
staigthforwardly obtained,xs =K/λ andys =K/λ′, which
gives aclimate biasof

(xs−ys)K =K
λ−λ′

λλ′
(5)

Let us now assume that the dynamical change is expressed
as a jump in the value ofK, K ′′

=K + δK. Under these
circumstances, the bias is given by

x′
s−y

′
s = (K+δK)

λ−λ′

λλ′

= (xs−ys)K +δK
λ−λ′

λλ′
(6)

indicating that the bias depends linearly on the “climate” per-
turbationδK. This straightforward analysis already suggests
that the bias is not a stationary quantity, as often assumed in
the climate community when working with anomalies. Let us
now consider that the model error is present in the parameter
K, δK =K ′

−K and the climate perturbation will affect the
parameterλ. Assuming for simplicity thatλ= λ′ and that the
new parameter value after the change is given byλ′′

= λ+δλ,
one gets

(xs−ys)λ =
δK

λ
(7)

(x′
s−y

′
s)λ =

δK

(λ+δλ)

= (xs−ys)λ−
δKδλ

λ
+
δKδλ2

λ
+O(δλ3) (8)
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indicating a nonlinear dependence of the bias on the climate
perturbation, imposed throughδλ.

Up to now, climate change was expressed in the form of an
abrupt change of a parameter, but usually parameter changes
are time dependent, such as the CO2 increase supposed to
affect the global temperature as a linear time dependent forc-
ing (see Nicolis, 1988, for a discussion on this point). There-
fore let us now consider that one has a climate change ex-
pressed through a progressive increase of the additive pa-
rameter in the form ofa ramp, namely thatK = γ +εt and
K ′

= γ + ε′t and the model error is incorporated in the pa-
rameter valueλ, λ′

= λ+δλ. Note that for completeness the
climate change scenario is also affected by an uncertainty in-
corporated through a modification of the parameterε. In this
case, the solutions of Eqs. (3)–(4) are given by

<x(t)> = <x(0)> e−λt +
γ

λ
(1−e−λt )

+
ε

λ
[
e−λt

λ
+(t−

1

λ
)]

<y(t)> = <y(0)> e−λ
′t
+
γ

λ′
(1−e−λ

′t )

+
ε′

λ′
[
e−λ

′t

λ′
+(t−

1

λ′
)]

(9)

and the time dependent bias is the difference between the two
equations. For times larger than 1/λ and 1/λ′, one gets

<y(t)>−<x(t)> ≈ γ
λ−λ′

λλ′
+(

ε′

λ′
−
ε

λ
)t

− (
ε′

λ′2
−
ε

λ2
) (10)

Clearly a (linear) time dependence of the bias is present that
will depend on the amplitude of the model errorδλ, the ramp
velocity ε and the uncertainty of the ramp velocityδε= ε′ −

ε.
These results indicate that even in a linear system, a non

trivial dynamics of the bias associated with the modelling
error is present under climate change. This feature contrasts
with the classical view that the bias associated with model
deficiencies are similar under climate change.

For comparison let us also consider the case of a multi-
plicative ramp. The evolution equation for the first moment
of the O-U process is

d <x >

dt
= −(λ+εt)< x >+K (11)

The formal solution involves error functions that are not
very transparent. One therefore resorts to an adiabatic for-
mulation – considering that the parameterε is small – in or-
der to get the solution for long times (Nicolis and Nicolis,
2000). It consists in transforming the time asτ = λ+εt and
seeking for a solution of the form

<x >=<x >0 +ε <x >1 +... (12)

Equating the terms corresponding to the same order inε,
one gets for the two first orders,

<x >0 =
K

τ
(13)

<x >1 =
K

τ3
(14)

Note that<x >0 is simply the stationary solution of Eq. (11),
and is referred as theadiabatic approximation. Similar ex-
pansion can be performed for the model version of Eq. (11)
in which the parameters are modified (becomingK ′ andε′).
The modification of the bias in time up to the first order inε
andε′ is now given by

<y > (t)−<x > (t) ≈
K ′

λ+ε′t
−

K

λ+εt

+ (
ε′K ′

(λ+ε′t)3
−

εK

(λ+εt)3
) (15)

revealing a complicate non-linear variation in time, even in
the case of this simple linear system.

2.1.2 A prototypical non-linear system

Assume now that the system under consideration displays a
limit point bifurcation. This is one typical bifurcation, known
to play an important role in many components of the climate
systems and in particular in the Ocean dynamics (e.g. Dijk-
stra, 2005; Dijkstra and Ghil, 2005). In the absence of fluc-
tuations, it obeys a normal form (see Nicolis, 1988),

dx

dt
= x(x−m)+K (16)

whose steady state solutions are given by

x± =
1

2
[m±

√
m2−4K] (17)

Let us now assume that a model error is present in m, the
model steady states are then given by

y± =
1

2
[m′

±

√
m′2−4K ′] (18)

Let us focus on the stable branch of solution and one as-
sumes that parametersK andK ′ are progressively increas-
ing in time,K = γ +εt andK ′

= γ +ε′t . In order to clarify
analytically the properties of the bias, one resorts to the adia-
batic approximation – considering that the parametersε and
ε′ are small – in order to get the solution for long times. Up
to the first order inε, one gets

x0 =
1

2
[m−

√
m2−4τ ] (19)

x1 =
−1

m2−4τ
(20)

y0 =
1

2
[m′

−

√
m′2−4τ ′] (21)

y1 =
−1

m′2−4τ ′
(22)
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whereτ = γ +εt andτ ′
= γ +ε′t are the rescaled times. The

bias is therefore approximately equal to

y−x ≈ (
1

2
[m′

−

√
m′2−4τ ′]−

1

2
[m−

√
m2−4τ ])

+ (
−ε′

m′2−4τ ′
−

−ε

m2−4τ
) (23)

This relation is represented in Fig. 1 as a function of time,
together with the direct numerical integration of the system
defined by Eq. (16) and its model version for different values
of ε andε′. First it clearly indicates the nonlinear charac-
ter of the bias under climate change expressed in the form
of a ramp. Second, relation (23) is a good approximation
of the variation of this bias. This relation displays a com-
plicate structure far from the simple approximation made in
the literature, namely constant bias or linear variation of the
bias (Buser et al., 2009). Note that a similar analysis can
be performed when parameterm is affected by the climate
modification with similar conclusions. It also clearly sug-
gests that the temporal variation of the bias highly depends
on the velocity increase of the parameter affected by the cli-
mate change (as for the O-U process with multiplicative ramp
presented in the previous section). This further complicates
the evaluation of the bias and of the future climate trends.

2.2 Linear post-processing

Usually the mean of the process is not the only moment af-
fected by the presence of model errors. One could therefore
have a need to correct higher order moments too, and in par-
ticular the variance of the field of interest.Under stationary
conditions, linear post-processing can allow for providing the
correction of both the mean and the variance as discussed in
Vannitsem (2009) for weather forecasts. These approaches
can be extended to seasonal or decadal forecasts, but in the
later case changes in system forcings (i.e. increase of anthro-
pogenic gases) could affect the potential of correction.

Let us assume that before any climate change, one can de-
velop a linear post-processing algorithm for a forecast, al-
lowing for the correction of both the mean and the variance
of the field of interest,

X′

C(t)=α
′(t)+β ′(t)XM(t) (24)

wheret refers to the lead time of the forecast,XM the model
predictor, and the parametersα′(t) and β ′(t) are obtained
by minimizing a cost function based on past forecasts (see
Vannitsem, 2009). To get a correction of both the mean and
the variance, the parameters should be equal to,

α′(t) = <XR>ref −β
′(t)<XM >t,ref (25)

β ′(t) =

√√√√ σ 2
R,ref

σ 2
M,ref(t)

(26)

where<XR>ref andσ 2
R,ref are the mean and the variance

of the reference system (in other word, the reality), and
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Fig. 1. (a)Temporal evolution of the bias obtained by the direct nu-
merical integration of Eq. (16) with m= 1, ε= 0.001 andγ = 0.05
and its model version withm′

= 1.01, ε′ = 0.0015 andγ = 0.05
(continuous line). The 0th and first order approximations (Eq.23)
are given by the short-dashed and dotted curves.(b) as in (a) but
with ε= 0.005 andε′ = 0.0055.

<XM >t,ref andσ 2
M,ref(t) are the corresponding quantity of

the model starting from the initial conditions defined by the
reality, before system’s modification. This post-processing
approach is referred as EVMOS (Error-in-Variable Model
Output Statistics, see Vannitsem, 2009).

One can also define optimal parameters that would have
been relevant during or after a system’s modification. Let us
assume that at a certain lead timet , one can write

XC(t)=α(t)+β(t)XM(t) (27)

where

α(t) = <XR>t −β(t)<XM >t (28)

β(t) =

√
σ 2

R(t)

σ 2
M(t)

(29)

where now<XR>t andσ 2
R(t) are the mean and the vari-

ance of the reality during or after the system’s change. The
indice t reflects the time dependence of these statistical prop-
erties due to the transient effects affecting the real system.
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Implicitely one assumes here that we have access to a set
of realisations of the reality under this transient forcing for
defining the optimal parameters.<XM >t andσ 2

M(t) are the
corresponding quantities for the model starting from the ini-
tial conditions of the reality. The question now is to know
to what extent the Eqs. (24)–(26) can replace the optimal
scheme defined by Eqs. (27)–(29) in post-processing future
forecasts.

In order to evaluate this impact, one can decompose the
mean square error of the corrected forecasts as,

<(X′

C−XR)
2>t = <(XC−XR)

2>t +(α
′(t)−α(t))2

+ (β ′2(t)−β2(t))σ 2
M(t)

− 2(β ′(t)−β(t))C(XR(t),XM(t)) (30)

whereC(XR(t),XM(t)) is the correlation between the actual
reality and the model forecasts after system’s change. The
second term is clearly positive, increasing the error of the
suboptimal scheme. The other terms can be either positive or
negative depending on the properties ofβ ′ andβ and there-
fore of the variability before and after the change.

To be more concrete, Let us now illustrate this evaluation
to the O-U process, as described by Eqs. (2) and with the pa-
rametersK = γ +εt andK ′

= γ +ε′t . In this case, the vari-
ances of the reference system and of the future climate are
the same (no modification due to the temporal variation ofK

andK ′, see Nicolis, 1988). This does simplify the problem
and one gets for timest >max(1/λ,1/λ′),

β2(t) =
σ 2

R

σ 2
M(t)

=
Q2

Q′2

λ′

λ

= β ′2(t)

α(t) =
γ

λ
+
ε

λ
(t−

1

λ
)−

Q

Q′

√
λ′

λ
(
γ

λ′
+
ε′

λ′
(t−

1

λ′
))

α′(t) =
γ

λ
−
Q

Q′

√
λ′

λ

γ

λ′
(31)

and

<(X′

C−XR)
2>t ≈ <(XC−XR)

2>t

+ (
ε

λ
t−

Q

Q′

√
λ′

λ

ε′

λ′
t)2 (32)

indicating that the quality of the correction as measured with
this quadratic norm is degrading as a function of the square
of the lead time. This also suggests that as it could be an-
ticipated, the post-processing could be useful (provided it is
useful before the change) when the system’s modifications
are kept small.

The important message of this section is that the quality
of post-processing (bias correction or linear regression) is
system’s specific and strongly depends on the model error
source and on the way parameters are affected by the change
(together with the uncertainty of the scenario). This pre-
cludes the possibility to deduce universal evolution relations

for these corrections and therefore to make some general as-
sumptions on the structure of the variations.

3 Analysis of a low order moist general circulation
model

3.1 Predictability experiments and post-processing
strategies

In the previous section, (potentially) complicate variations
of the bias and regression parameters in the presence of
model error and system’s modification have been illustrated
in the context of scalar systems. In particular, it has been
shown that it depends critically (linearly or non-linearly) on
the amplitude of the model error, the uncertainty of the cli-
mate change scenario and the velocity of this change. In the
present section, post-processing is explored in the context of
a low-order moist general circulation system (an atmosphere
coupled to a slab ocean).

In order to simplify matters, we will consider only the case
for which the system has reached its own attractor after cli-
mate change, or in other words, there is no transient evolu-
tion of the external parameters but just a small instantaneous
jump leading to a modification of the attractor’s properties.
Although transient forcing variation certainly plays an im-
portant role in the actual dynamics, this will add a further
complication, not of high relevance in the context of this ide-
alized model. Furthermore one assumes for simplicity that
the external climate forcing jump is the same for both the re-
ality and the model. This will emphasize the role of model
errors and not of the forcing uncertainty. Last point will be
addressed in the future in the context of a more realistic cli-
mate model.

In the following, the experiments based on the model de-
scribed in the Appendix will therefore be performed by fixing
the value ofa′ (without an explicit time dependence). Once
this value is fixed, long runs are performed in order to get
asymptotic results. The runs presented below are typically
performed for periods of the order of 50 000 days, after a
transient period of convergence toward the respective attrac-
tors.

3.2 Results

3.2.1 Natural variability

Let us start briefly with the analysis of the solutions of this
system. Figure 2 shows the averaged air temperature, dew
point, total atmospheric heat forcing, relative humidity and
albedo as a function ofT 0 (the spatially averaged solar forc-
ing temperature, see the Appendix) forT 3= 10 K (the am-
plitude of the latitudinal variation of the solar forcing temper-
ature) andD= 1.0 (parameter related to the Ocean volume).
The different curves correspond to different values ofa′. A
quite complex structure is found with a sensitivity to changes
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Fig. 2. Mean state as a function ofT 0 for different values ofa′ and withD= 1.0 andT 3= 10 K, for (a) the atmospheric temperature,(b) the
dew point,(c) the heat forcing (Eq. A8), and(d) the relative humidity and the albedo.

of T 0 which is highly variable depending on the range of
T 0 values considered. In particular for large values ofT 0, a
large jump is found in the diagram reflecting a drastic change
of dynamics, as indicated also by the drastic decrease of the
total atmospheric heat forcing shown in Fig. 2c. It is also
worth noting that by increasing the parametera′, a global
shift of the curves toward smaller values ofT 0 is found. In
other word, for a specific value of the external forcingT 0,
the increase ofa′ implies an increase of atmospheric temper-
ature and dew point, and the albedo and relative humidity are
decreasing. Note that this feature, specific to the present ide-
alized model, could be different in other models for which
cloud feedbacks and atmospheric absorption are more com-
plicated.

Let us now look at the dynamical instability of this sys-
tem (e.g. Kalnay, 2003). The Lyapunov exponents have been
computed through a simple algorithm based on the (nonlin-
ear) evolution of a set of small amplitude orthogonal pertur-
bations. Different amplitudes have been tested without sub-
stantial differences.

Figure 3 displays the dominant Lyapunov exponent as a
function of T 0 for (a) T 3= 5 K andD = 1, (b) T 3= 10 K
andD = 1, (c) T 3 = 15 K andD = 1, (d) T 3 = 10 K and

D = 0.1, (e)T 3= 15 K andD = 0.1. Different curves are
plotted for different values ofa′. In panel (a), Stable fixed
points, (quasi-)periodic or chaotic solutions are found. In the
other panels, there is no stable fixed points solutions for the
range of values ofT 0 explored.

Let us now be more specific by investigating the struc-
ture of the bifurcation diagram forT 3= 10 K, a′

= 0.5 and
D= 1 (panel b) which corresponds to the solution presented
in Fig. 2. For small values ofT 0 and for values ranging from
282 K to 284 K, the solution is (quasi-)periodic. For interme-
diate values (between 275.5 K and 281.5 K) and the largest
values explored (284.5 K and 285 K), the solution is chaotic.
For these large values ofT 0, mean temperature reaches very
high values 315 to 320 K. These values are unrealistic for our
midlatitude climate and in order to keep some resemblance
with our climate atmosphere, we focus on smaller values of
T 0. For values between 276 and 280, the mean tempera-
ture field, dew point, relative humidity and albedo are closer
to the values effectively observed for the Earth climate. In
this range the dominant Lyapunov exponent is of the order
of 0.15 to 0.20 day−1, a value not far from estimates ob-
tained in more complex models (e.g. Vannitsem and Nicolis,
1997). ForT 3= 15 K, one can reach values up to 0.30 day−1
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Fig. 3. Dominant Lyapunov exponent as a function ofT 0 for different values ofa′, for (a)T 3= 5 K andD= 1.0, (b) T 3= 10 K andD= 1.0,
(c) T 3= 15 K andD= 1.0, (d) T 3= 10 K andD= 0.1 and(e)T 3= 15 K andD= 0.1.

(see panel c). When the volume of the Ocean is increased
(D= 0.1, panels d and e), a reduction of these maximum val-
ues is experienced. The effect of increasinga′ is mainly to
displace the whole Lyapunov diagram toward smaller values
of T 0. This suggests that depending on the actual value of
T 0, the system can experience either an increase or decrease
of short term predictability as a function of the increase ofa′.

3.2.2 Post-processing

The central question of the present work is to know whether
post-processing techniques can be used, after a climate
change. In order to investigate this aspect, we first introduce

a model error in the system affecting its climate. Model er-
rors are present in the various parameterizations used in at-
mospheric or climate models, but in order to keep things sim-
ple, we just introduce an error in the estimate of the coupling
coefficientk between the Ocean and the Atmosphere. The
actual value ofk is 0.015 and we fix for most of the experi-
ments presented below a value for the model tok= 0.014, so
just a few percent errors.

For the forecasting experiments, we also introduce a ran-
dom initial condition error sampled from a uniform distri-
bution between[−5×10−5,5×10−5

] . This experimental
design assumes that the initial condition is better known that
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Fig. 4. (a)Temperature bias between the reference system withk= 0.015 and the model version withk= 0.014 for different values ofa′,
and withD= 1.0 andT 3= 10 K; (b) as in(a) but withD= 0.1 andT 3= 10 K; (c) as in(a) but withD= 1.0 andT 3= 15 K; as in(a) but
with a model version withk= 0.016, and withD= 1.0 andT 3= 10 K.

the model structure. This specific choice has an impact on
the post-processing correction for short times because the
larger is the initial condition error, the smaller is the po-
tential correction of the method (see Vannitsem and Nicolis,
2008). However it does not qualitatively modify the conclu-
sions drawn below.

The climate mean

Let us first consider the case where only the bias between
reality and model is corrected as it is usually the case for cli-
mate projections. Figure 4 displays the difference between
the climatological averages of the air temperature for dif-
ferent parameter settings and different values ofa′, reality-
model. The difference is strongly dependent on the value of
T 0, from just a few tenth of degrees up to 7 degrees. Once
this quantity is known, one can correct the forecast for the
mean temperature. Let us now assume that the system is ex-
periencing a climate change through an increase of the pa-
rametera′. In this case the mean difference (the system-
atic bias of the model) can be very different as illustrated
in Fig. 4. For instance if one focuses on the case where
T 0= 277 K,T 3= 10 K andD= 1.0, the difference can pass

from about−1.5 degrees fora′
= 0.48 to−3.5 fora′

= 0.50
and back to−1 for a′

= 0.52. This of course has strong
influences when one wants to infer the absolute values of
the change in mean temperature expected in the future. In
the present example, one would overestimate the mean tem-
perature after climate change by about 2 degrees (fora′ go-
ing from 0.48 to 0.50), even if we know exactly howa′ has
changed. For other parameter values, the effect can be much
milder but sometimes it can be very dramatic like when the
system is close to a qualitative change of dynamics as for
T 0 = 283.5 K or 276 K (up to 6 degrees) in panel (a), or
even more as in panel (c) and can sometimes even change
sign (panels b and c). Note that there is almost no change of
the biases when the dynamics becomes (quasi-)periodic (see
Fig. 3). For larger value of the model parameterk (0.016
in panel d) a similar picture holds, but the bias is most of
the time of the opposite sign to the ones corresponding to
k= 0.014.

The main message is therefore that the systematic correc-
tion associated with the presence of model errors cannot be
straithgforwardly transposed from one climate condition to
another, as usually done in long term climate projections
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(Solomon et al., 2007). In other words, the impact of model
errors cannot be simply considered as a purely constant sys-
tematic additive term. This introduces a further (probably
rather large) uncertainty on the possible future outcomes of
the climate system, associated with the presence of model
errors.

Finally, one can wonder whether developing an ensemble
scheme based on a set of forecasts using different parame-
ters (as discussed for instance in Stainforth et al., 2007) is
worth doing in order to evaluate the range of possible out-
comes. 100 runs are performed with different values ofk

ranging from[0.0145,0.0155]. The reference value is cho-
sen as one model coming from this ensemble (k= 0.01511).
The mean temperature is computed for this set of models and
for three different values ofa′. The mean temperature biases
are plotted as a function ofk in Fig. 5. First the range of
possible biases for this ensemble of model runs differs con-
siderably from one value ofa′ to another, and there is no
clear dependence of this quantity as a function ofa′. This in-
dicates that the actual uncertainty of the model biases cannot
be straightforwardly transposed to another value ofa′ (or in
other words for different absorption forcings). But what is
interesting to mention is that there is an almost linear depen-
dence of the bias as a function ofk, suggesting that the best
models are the ones having a value ofk close to the actual
one, whatever is the value ofa′. This supports the usefulness
of classifying the quality of the models under the current cli-
mate conditions as in Giorgi and Mearns (2003), as a con-
fidence in their climate projections. But still one should be
cautious because these results have been obtained for a small
range of uncertainty ofk and assuming that the model error is
only associated with the error of a parameter. Other sources
of model errors can play an even more important role, like
processes not represented in the model (referred to asmodel
inadequacyin Stainforth et al., 2007). These could change
the conclusions but the analysis of this aspect is beyond the
scope of the present work and is worth performing in a more
complicate model.

Linear post-processing of forecasts

Long term projections on centennial or millennial time scales
are one aspect of climate prospective. Another domain of
very active research is to try to perform some climate fore-
casts on shorter time scales, from seasons to decadal time
scales. These forecasts are also affected by model errors and
furthermore are subject to slow changes of the climate forc-
ings. Let us now focus on a more “sophisticated” (linear)
post-processing technique, already discussed in Sect. 2, aim-
ing at correcting forecasts. Again as in the previous section,
one assumes that the climate change is simply represented
by an increase ofa′ without any additional transient dynam-
ics. The training of the post-processing technique is first per-
formed on forecasts obtained with one value ofa′ and then
applied and verified on a second set of forecasts obtained

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.0144  0.0146  0.0148  0.015  0.0152  0.0154  0.0156

B
ia

s

k

a’=0.48
a’=0.50
a’=0.52

Fig. 5. Mean temperature bias for different values ofk anda′. The
reference value ofk is 0.01511, for eacha′. D = 1.0, T 3= 10 K
andT 0= 277 K.

with another value ofa′. The number of forecasts for the
training and verification phases is fixed to 5000. The regres-
sion is performed for each lead time of the forecast and at
each grid point of the system grid.

Figure 6 displays the time variation of the parameterβ(t)

andα(t) for the air temperature and dew point for parame-
ter valuesD= 1.0, T 0= 277 K andT 3= 10 K and for one
specific location of the central row of the grid of this coupled
system. Three different parameter valuesa′ are displayed.
The lines without symbols represent a running average of
the parameters starting after about 15 days. Two time scales
should be distinguished, before and after about 10 days. For
the atmospheric temperature at short time scales, the param-
eters are close fora′

= 0.48 and 0.50, while fora′
= 0.52 it

varies in an opposite direction. For dew point, the picture is
slightly different where the variations of the parameters are
closer to each other for short time scales. For longer time
scales, the variability of the parameters is pronounced and
the running mean values (lines without symbols) are sub-
stantially different for the different parameter valuesa′. This
variability is associated with the rather “small” number of
forecasts used for the training.

In order to clarify whether a correction can be obtained
when applying the parameters defined for a specifica′ to
forecasts generated with another parametera′, we have com-
puted the ratio of the Mean Square Error (MSE) after correc-
tion and the MSE of the raw forecasts (Fig. 7). If its value
is below one, a correction is obtained. In each panel the ac-
tual value ofa′ is 0.52 and the results obtained with post-
processing based on parametersa′

= 0.48, 0.50 and 0.52, are
displayed. ForD= 1.0, the use of parameters corresponding
to a′

= 0.50 is still improving the atmospheric temperature
and dew point for short times, but not with the smallest value
of a′. ForD= 0.1, even the use of parameters corresponding
to a′

= 0.50 does not improve the atmospheric temperature.
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Figure 8 displays the variations of the mean square error
ratio for post-processing trained with different values ofa′

and applied on a set of forecasts produced ata′
= 0.52. The

lead time is fixed to 5 days and two different values ofD

are considered, namely 1.0 and 0.1. This results indicate that
the traditional post-processing approach can be useful but in
some restricted situations, for which the dynamics does not
vary much between the training and the verification phases.
This corroborates the results of Sect. 2. Moreover, the vari-
ations of the quality of post-processing display a complicate
nonlinear dependence, as a function of the difference be-
tween the values ofa′ used for verification and for training.

4 Conclusions

Statistical post-processing is a common approach to correct
weather and climate forecasts, as well as climate projections.
The main assumption behind these approaches is the station-
arity of the correction parameters allowing for an application
of the techniques for new runs or forecasts. Under climate
change, this hypothesis is not realistic, as it has been amply

demonstrated in the present paper. In particular biases can
display linear or non-linear variations depending on many
aspects, the nature of the underlying dynamics, the source of
model errors, the intensity (velocity of change) of the forcing
scenario and its uncertainty. These features are system spe-
cific, increasing considerably the difficulty in assessing the
quality of future forecasts or projections, and their potential
corrections.

This analysis has been performed here in the context of
very simple systems. A natural extension will be the in-
vestigation of an intermediate order climate model in the
same spirit in the presence of realistic model errors. This
analysis could provide a more quantitative information on
the variations of biases and post-processing parameters, that
could guide future estimates of the uncertainties of climate
forecasts or projections and the development of correction
schemes based on non-stationary coefficients.

The present work has also been limited to the most sim-
ple post-processing approaches for single model forecasts
or runs. Recently there were a lot of efforts in developing
and using multi-model ensembles to evaluate the uncertainty
of climate projections. This question has been just slightly
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touched upon by performing a few runs with different pa-
rameter values reflecting the model uncertainty. In this case
the result suggests that the closest is the model parameter
value from the true value, the smaller is the bias. In other
words, the ranking of the quality of the models seems to be
more robust than the amplitude of the bias. This could jus-
tify the usefulness of some statistical approaches (e.g. Giorgi
and Mearns, 2003; Duan and Phillips, 2010 and reference
therein) providing a larger weight to projections generated by
the models matching best the current observations. Weigel et
al. (2010) however pointed out the difficulty in finding cor-
rect weights for each model of the ensemble, that could lead
to worse results than equal weighting. This clearly points out
the necessecity for a thorough analysis of these approaches in
simple dynamical systems, in a similar vein as in the present
work.

Finally, it has been clearly demonstrated that working
with anomalies (as usually presented in international reports)
masks some deficiencies of the system and introduces over-
confidence which is not appropriate especially when mitiga-
tion strategies of the impact of climate changes are envis-
aged.
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Appendix A

The low-order moist general circulation model

The model developed by Lorenz (1984) is a coupled Ocean-
Atmosphere model, whose atmosphere is composed of a
mixture of dry air and water into two possible phases, vapor
or liquid. The Ocean is just a heat bath at which the atmo-
sphere is coupled and with which it exchanges water and heat
through simple parameterizations. The domain is periodic in
the west-east direction and bounded on the North and South
by frictionless vertical walls. The atmosphere is described
as a baroclinic dynamics defined on aβ plane. The exter-
nal driving force is the incoming solar radiation. The basic
prognostic equations are: the vorticity equation,

∂∇2ψ

∂t
+J (ψ,∇2ψ)+β

∂ψ

∂x
= −f∇

2ξ+F (A1)

whereψ , ξ andF are the streamfunction, the velocity po-
tential and the curl of the viscous drag, respectively. The op-
eratorJ is the Jacobian,f andβ are the coriolis parameter
defined for the midlatitudes and its first derivative, respec-
tively; The thermodynamic equation

d(cpT +Lv)

dt
=
RTω

p
+H (A2)

whereT , v, ω andH are the air temperature, the water va-
por mixing ratio, the vertical velocity in pressure coordinates
and the atmospheric diabatic heating per unit mass, respec-
tively, andL andcp are the latent heat of condensation and
the specific heat of air at constant pressure; the water content
equation,

dw

dt
=G (A3)

wherew andG are the total water mixing ratio and the gain
or loss of water by evaporation or precipitation, respectively;
and the oceanic thermodynamic equation,

dcS

dt
=E (A4)

whereS andE are the oceanic temperature and the oceanic
heating per unit mass, respectively. The coefficientc is the
specific heat of water. These prognostic equations are com-
plemented by the diagnostic continuity and thermal wind
equations. Note that the total water mixing ratio is itself
transformed into a dew point temperature through the diag-
nostic relation,

w= c′Wµ/p (A5)

whereµ is a constant fixed toL/RwTs≈ 20, derived through
a simplification of the Clausius-Clapeyron equation. Equa-
tion (A3) is replaced by an equation for the dew point tem-
perature.

This system of equations is then simplified through a two-
layer vertical discretization for which the streamfunction is
defined at two levels and temperature (air or dew point) at an
intermediate level, and in the horizontal direction by focusing
only on the largest modes. This approximation reads

X=

6∑
n=0

Xn8n

where

80 = 1

83j−2 = 2sin(jy)cos(2x)

83j−1 = 2sin(jy)sin(2x)

83j =
√

2cos(jy)

for j = 1,2. All the variables are adimensionalized, with the
charactristic scales fixed tof−1

= 3 h, L= 1830 km,p0 =

1000 mb, and the unit of temperature is equal to 100 K.
Lorenz (1984) also has proposed a pseudo-specral method

to evaluate the sources and sinks terms and the nonlinear
terms appearing in the equations. The grid developed by
Lorenz is composed of 9 grid points. All the parameters are
fixed as in Lorenz (1984), except the lapse rate fixed to 0.215
as in Nese et al. (1996). The integration time step is fixed to
0.02 time units.

The vertically averaged forcings are given by the relations

F = −k∇2ψ (A6)

F = −k′
∇

2T (A7)

H = −k{cp(T −S)+L(v−s)}+HR (A8)

G= −k(v−s)−(lν/λ)(w−v) (A9)

E= −
p0

p1−p0
k{cp(S−T )+L(s−v)}+ER (A10)

wheres is the saturation mixing ratio at temperatureS and
mean sea level pressurep0. p1 is the pressure at bottom
of oceanic layer.k is the coupling coefficient between the
ocean and the atmosphere. Another damping term (A7) with
coefficientk′ is reducing the shear between the two levels.
1/l is a damping time scale corresponding to the half life of
clouds (water delivered as rain). A new constant containing
information on the volume of the oceanic layer is defined as
D=p0cp/((p1−p0)c). The radiative terms are defined as
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HR = (σg/p0)v
′a′′(S4

−T ′′4
−T ′4) (A11)

ER = (σg/(p1−p0))(−S
4
+v′a′′T ′′4

−(1−v′a)T ∗
4) (A12)

where

v′a′′
= v′(a+(1−a)a′) (A13)

accounts for the fraction of heat effectively absorbed by the
atmosphere where 1−a′ is the fraction of longwave radia-
tion that will go out the atmosphere without absorption. Note
that in the original discussion of Lorenz (1984),a′ was con-
sidered as the part transmitted toward space, but it cannot
coincide with the effective fraction of heat absorbed by the
atmosphere, Eq. (A13), except in the case ofa′

= 0.5 which
is precisely the value chosen by E. Lorenz.σ is the Stefan
constant,T ′ andT ′′ are temperatures at which the cloud-free
portion of the atmosphere is radiated upward and downward,
respectively, andv′

= v/(v+vs) wherevs is a reference wa-
ter vapor mixing ratio.

Finally the solar forcing entering in the termER depends
on 2 Fourier coefficients,

T ∗ = T 080+T 383

In this idealized coupled ocean-atmosphere system, one
can wonder how one can simulate a climate change associ-
ated with the variations or atmospheric absorption. The an-
swer can be simply by modifying the net absorption of long-
wave radiations coming from the ocean by the atmosphere.
So we will simply focus on variations of the parametera′,
appearing in Eq. (A13). This parameter will be modified in
such a way that the mean air temperature difference reaches
a few degrees (temperature differences expected in a climate
change).
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