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Abstract. A new low-order coupled ocean—atmosphere proposed in various fields of science (e.§prott 2010,
model for midlatitudes is derived. It is based on quasi-and in particular in climate scienc€lfarney and DeVore
geostrophic equations for both the ocean and the atmospher&979 Nicolis and Nicolis 1979 Vallis, 1988 Yoden 1997,
coupled through momentum transfer at the interface. Thdmkeller and Monahar2002 Crucifix, 2012. These models
systematic reduction of the number of modes describing thellow clarifying important aspects of the underlying struc-
dynamics leads to an atmospheric low-order component ofure of the atmospheric and climate dynamics, such as the
20 ordinary differential equations, already discusseRléim- possibility of multiple stable equilibria (e.gSimonnet and
hold and Pierrehumbe(tl982, and an oceanic low-order Dijkstra, 2002 Dijkstra and Ghi] 2005, the possibility of
component of four ordinary differential equations, as pro- catastrophic events (e.gRaillard 1998, or the intrinsic
posed byPierini(2011). The coupling terms for both compo- property of sensitivity to initial conditions that led to the de-
nents are derived and all the coefficients of the ocean modelelopment of new approaches for forecastibgrénz 1963
are provided. Nicolis, 1992 Palmer 1993 Trevisan 1995 Nicolis and

Its dynamics is then briefly explored, through the analysisNicolis, 2012. Such models are also often used to evalu-
of its mean field, its variability and its instability properties. ate new tools developed in the context of weather and cli-
The wind-driven ocean displays a decadal variability inducedmate forecasting problems, such as data assimilation ap-
by the atmospheric chaotic wind forcing. The chaotic behav-proachesRires et al. 1996 Carrassi and Vannitsera01Qq
ior of the coupled system is highly sensitive to the ocean—2011), conceptual analyses of deterministic or stochastic
atmosphere coupling for low values of the thermal forcing climate forcings Yittenberg and Andersori998 Arnold
affecting the atmosphere (corresponding to a weakly chaotiet al, 2003, extreme value analysekucarini et al, 2012
coupled system). But it is less sensitive for large values ofor post-processing/nnitsem 2009 Van Schaeybroeck and
the thermal forcing (corresponding to a highly chaotic cou- Vannitsem2011), among others.
pled system). In all the cases explored, the number of pos- By definition, these low-order models are built in such
itive exponents is increasing with the coupling. Two codesa way to simplify as far as possible the system under in-
in Fortran and Lua of the model integration are provided asvestigation and keep only the key ingredients of interest, as
Supplement. for instance the analysis of the impact of an orography on
the instability of atmospheric flows as @harney and Straus
(1980. When dealing with climate the same procedure can
be performed by focusing on one specific aspect, for instance
1 Introduction the global energy balance of the earth assuming that the dy-

namics at smaller space and timescales could be modeled

Low-order models were originally developed to isolate key pased on stochastic processhiiclis and Nicolis 1979.
aspects of the atmospheric and climate dynantsrimel  \when one is interested in keeping key ingredients of pro-

1961 Saltzman1962 Lorenz 1963 Veronis 1963. Since  cesses acting at very different scales, the problem becomes
these early developments, many low-order models were
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more involved and only a few such models have been develsimulate the dynamics of single or double oceanic gyres,
oped. A popular approach consists in coupling two low-ordertypical in the Northern Atlantic and Pacific. The coupling
models and modifying artificially the typical timescale of one is done through momentum transfer at the interface, only.
of them (e.g.Goswami et a].1993 Pena and Kalngy004). This model has the advantage to be derived from first prin-
This approach could indeed provide an easy way to buildciples as invan Veen(2003 and Lorenz (1984Hh, but fo-
such multiscale models, but one loses physical significancecusing only on the coupled dynamics associated with the
Another interesting model built in this form was proposed momentum forcing between the two components. It will
by Roebber(1995, in which the low-ordetorenz (19843’ be referred to as OA-QG-WS v1 (OA-QG-WS for Ocean—
model is coupled with an oceanic three-box model (with six Atmosphere Quasi-Geostrophic Wind Stress). An extension
ordinary differential equations for temperature and salinity) has also been proposedVfannitsem(2014, by adding at-
developed byirchfield (1989, using empirical relations for mospheric modes as Reinhold and Pierrehumbgi1982).
heat fluxes. This led to a coupled model of nine prognos-This second version of the model, whose dynamics was only
tic variables, with two specific timescales, one for the atmo-slightly touched upon iWannitsem(2014), is the central sub-
sphere and the other for the ocean. ject of the present paper, and will be referred to as OA-QG-
The other approach consists in starting from a detailedWs v2.
coupled model and systematically reducing the number of The degree of sophistication of this low-order model is
modes of the different components. A first attempt madesuch that it is not straightforward to evaluate all the coupling
by Lorenz(1984H led to a coupled ocean—atmosphere low- coefficients (and the coefficients of the oceanic part), due to
order model incorporating many processes like condensathe presence of different orthogonal basis functions and in-
tion, evaporation, and radiative transfer. However, the oceamer products for both climate components. These are there-
was only considered as a heat bath. This model was subfore made available here and some validation test cases are
sequently modified byNese and Duttor{1993, in which provided for subsequent use of the model by the atmospheric
oceanic transport is incorporated in a way similavéwonis and climate communities. The revision of the model also al-
(1963. The final version of this model contains 31 prognos- lowed correcting a few coefficients of the first model version
tic variables and several diagnostic relations. The couplegresented invannitsem(2014), without qualitative modifi-
model developed byese and Duttor{1993 was used to  cations of the results and conclusions. In addition, a few re-
evaluate the impact of the ocean transport on the predictabilsults concerning the dynamical instability of the system are
ity of the coupled system. They have found that when theprovided, and similarities and dissimilarities with the trends
ocean dynamics is activated, the predictability as measuredlready found invannitsem(2014) are discussed.
by the Lyapunov exponents is increased. Another interest- The original partial differential equations of the model and
ing model developed byan Veen(2003 and derived from  the choice of the orthogonal modes are presented in Sect. 2.
first principles combines the three-variable atmospheric sysSection 3 is devoted to some properties of the model that
tem ofLorenz(19844 and the four-variable ocean model of could serve as a benchmark. The appendix contains all the
Maas(1994. In this seven-variable model, a clear distinc- coefficients of the model, as described in Sect. 2. In Sect. 4,
tion between three different timescales is made, one for thesome conclusions are drawn.
atmosphere, one for the deep ocean and one for the ocean
surface layer. In this model, a systematic bifurcation analy- )
sis has been undertaken and compared with the bifurcatiod The model equations of OA-QG-WS v2
structure of the atmospheric component only. In particular it
was shown that the ocean plays an important role close to th

bifurcation points of the model, but much less in the chaoticThe atmospheric model, developed bgharney and

regime. In the latter case the ocean integrates the rapid ﬂucStraus(lQS() and subsequently extended Rginhold and
tuations of the atmosphere in a quite passive manner withou, ierrehumberf1982), is a two-layer quasi-geostrophic flow

prowdlng a;trong feedback toward the atmosphere. In add'blefined on a beta plane. The equations in pressure coordi-
tion, only single oceanic gyres can develop. nates are

Building on the latter stream of ideagannitsem(2014

g.l The atmospheric model

proposed to couple two low-order models for the atmo- 51 121 ayl

sphere and the ocean, derived from quasi-geostrophic equg;, (V 4 ) I VY )"‘IBW

tions. This model is intermediate between the “very low- P s fo

order” coupled models proposed bgn Veen(2003, and =—kgV W~ =¥ + A (1)

the more sophisticated process-oriented low-order coupleda 943
models ofLorenz (1984h and Nese and Duttor(1993. <v2¢3> +J(1/,3,v21/,3)+lgl

It is based on the low-order quasi-geostrophic model of 1 dx
Charney and Straugl980 and the shallow water quasi- = +k, V2t —y3) - ﬁw_deZ(lﬁ_ ), 2)
geostrophic model oPierini (2011). The latter is able to Ap
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ai(wl S Ty dy 2t -yt — (’fﬂw and the fields are then expressed as
t 0
10
= hgl(y =93 — =), @ y=3wk
=1
wherey1, ¥3, » are the streamfunction fields at 250 and 10

750 hPa, and the vertical velocity (i.ep M), respectively. 0= ngFk’
fo is the Coriolis parameter at latitudeg, 8 = df/dy at ¢o, k=1

_ aT _ RT\; ; 0 ; 10
oc=—R/p (E — p_c,,) is the static stability (wher& is the = Zkak’

temperatureR the gas constant ang, the heat capacity at =1

constant pressure) considered as constarandk; are the 10

coefficients multiplying the surface friction term and the in- (¢ — y3)* = ZZB,ka,

ternal friction between the layers, respectivehyl — y3)* k=1

is a constant thermal forcing of the atmosphere (Newtonian 1 3 1 3 .
) o . oo where = - 2 andy = 2. Using th

heating). An additional term has been introduced in this sys- 0=~ —y")/2 andy = (Y= +y7)/2. Using the

: usual inner product,
tem in order to account for the presence of a surface boundary P

velocity of the oceanic flow defined bl (see next section). n 2r/n
This would correspond to the Ekman pumping on a moving £, g) %/dy/ / dv' fe. @
surface and is the mechanical contribution of the interaction T 0 0

between the ocean and the atmosphere [@ayemble et al. ) ) )
2012. one gets the set of equations reported in the Appendix of the

Note also that the heating term has not been modified eveR2Per 0Reinhold and Pierrehumbgt982 and inReinhold
if heating is coming mostly from the ocean. Itis assumed tha2nd Pierrehumbe(@989), leading to 20 ordinary differential
this heating is a fast process as compared to the dynamics gauations for the dependent variabjgsandéy. The dynam-
heat transport in the ocean, thereby transferring almost ini€S Of this atmospheric model has also been explored with
stantaneously the energy toward the atmosphere. This strorfgnPhasis on the predictability of the atmosphere in the pres-
assumption allows isolating the impact of wind-driven in- €Nce Of weather regimes irevisan et al(2001]).

teractions between the ocean and the atmosphere. This as- TN€ presence of the ocean is felt through the coupling as-

sumption could be relaxed in a future version of the modelSCciated with the motion of the ocean surfaiGey“\w where

in a similar way as irvan Veen(2003 or Deremble et al. ¥ 1S the streamfunction of the oceanic flow as defined in the

(2012. next section. It is also projected on the different atmospheric
These equations are then adimensionalized by scaling0des using the inner product of E4).(The coefficients are

X' =x/L andy' = y/L, t by f—l, w by foAp andy by given in Appendix B. _ o

L2f, and the parameters are then also rescaledgas Note that the thermal forcing term is fixed asGharney

(0 Ap?)/(2L2f2), 2k = ka/fo. k' = K,/ fo. " = hy/fo. The and Straug1980 andReinhold and Pierrehumbét982) in

fields are expanded in Fourier series over the domaia  Which the only nonzero term igy, which will be referred

[0, 7] andx’ = [0, 27/n], and only 10 modesFy, are re- to asf* in the sequel. This corresponds to a thermal forcing

tained obeying the bOl,Jndary conditioﬁ§k/(a;/’) _0at Onlydependent on the latitude with a larger contribution in

Y =0,7. n is the aspect ratio between the lengths of the "€ Southem part of the domain.
domaininy and inx,n =2L,/L, =2nL/(2rL/n). These

2.2 Ocean model
modes are

The ocean model is based on the reduced-gravity quasi-
F1= ﬁcos(y/), geostrophic shallow water modeVdllis, 2006. The basic
F» = 2cognx’) sin(y), assumptions behind this equation are that (i) the ocean dy-
. o namics can be described by a shallow water fluid layer su-
F3=2sinnx’) sin(y), perimposed over a quiescent deep fluid layer, (i) the Rossby
Fr= ﬁcos(Zy’), numberRo= U/(foL) is small, and (iii) the space scale of
Fs = 2cognx’)sin(2y’), the process under inve;tigatio_n shou_ld not be significantly
Fr— 25 N sin2y’ larger than the deformation radius (typically of a few hundred
6 = 2Sin(nx’) SIn(2y’), kilometers for a fluid layer depth of the order of 100 m). The

F7 =2cog2nx") sin(y"), forcing is provided by the wind generated by the atmospheric
Fg = 2sin(2nx’)sin(y’), component of the coupled system. The equation reads
Fg = 2cog2nx")sin(2y"),

) -S{ /) -(y/) 2 vy - ¥ + J (W v2\11)+/3ﬂ
F10=2sin(2nx")sin(2y"), ot L% ’ 9x

www.geosci-model-dev.net/7/649/2014/ Geosci. Model Dev., 7, 6882-2014



652 S. Vannitsem and L. De Cruz: Low-order O—A model

= (5) defined atx = 0,27 /n andy =0, . In addition a specific
ph inner product is adopted for the oceanic model in a similar

whereW is the velocity streamfunction (or pressurg)the W&y s inPierini (2013,

density of wateri the depth of the fluid layel,r the reduced

Rossby deformation radius a friction coefficient at the bot- n 7 2/

tom of the fluid layer, and curt the vertical component of  (f, g) = ﬁ/dy / dy’ fge®*
the curl of the wind stress. Usually in low-order oceanic mod-

eling the latter is provided as an ideal profilein the meridional

direction (e.g.Simonnet and Dijkstrg2002. In the present Introducing the truncated field§,,, Ay ¢m, form = 1,4,
work, this is provided as a “real” wind field generated by the into Eg. (7) and projecting on each mode using the inner
atmospheric low-order model. Assuming that the wind stresgroduct Eq. 9), one gets a set of four ordinary differential
is given by(zy, 7y) = C(u—U,v— V) wherex andv are the  equations for the variables,,,

horizontal components of the lower layer geostrophic wind,

©)

—ay3/9y anddy3/dx, respectively, and/ andV the cor-  dA; L11a— L314 Li1o— L31»

responding quantities in the ocean, one gets ar T a+b M Tt A1dz
Lioz— L Liza— L

curl,t  C _, 3 _ L1287 T823 h pa 2134 T334 A

== VAW W), (6) artbr 00T Tavb ot
o o

e1—di fi— 1, 1

Here the wind stress is proportional to the relative velocity + a+b T ai+by + /D,

between the flow in the ocean layer and the wind. This slightg4,
modification as compared with the version model OA-QG- —— = —
WS vl in which the stress was only based on the absolute

Lo11— L411 2 L233—L433

2
1 A3
mi+nq mi1+niy

L213— La13 q1—o1

wind velocity, has been made in order to avoid spurious forc- - A A3+——— A
ings when the velocities in the atmosphere and the ocean are ml T ni+mi
s?milar. Itis how_ever a correction .which iS quite margina[ in A p1 A + £(2),

view of the (typically) small amplitudes of the flow field in

the ocean.
Using the same domain and the same nondlmensmnahza dt
tion procedure as in the atmospheric model, one gets

L114 L314 )
— L314) A1A4
( Cai+b1
L112 Liio— L3z

S a1+by

+

/

g (v/ \I-[/+J/\I—[/> +J/(\I//,V/ \D/)‘i‘ﬁ/F
— —V/V/Z‘I// + 5V/2(1ﬂ/ _ \II/)
= —(r + 8V + 8V, ©)

2) A1A2

+

a1 +b1

L134— L334
—bj——7—— L334) A3A4
a1 +b1

+

wherex’ =x/L, y =y/L, ' =tfo, ¥V =W/(L?fo), ¥ = e1—dp
v3/(L?fo), B' = BL/fo, vy = —L?/L}, r' =r/fo and§ = ay+by
C/(phfo). fi—c1
Let us now define the truncated basis functions on which <b1 a1+ b1
the streamfunction field is projected. Several truncations

_|_

b1

ni
Li23— L323
( by———— — L33) A243

+do— 60) Az

+

+Co—vo>A3+f(3)

were proposed in the literature from two-modéa(g et al. — ( my 2 La L411> A2
1995 up to four-mode truncationsS{monnet et al.2005 mi+ni
Pierini, 2017), the latter approach allowing for chaotic be- (m L33— L33 _I A2
haviors. In the present work, we use the following set of Yot my+nq 433) 13
modes, L213— La13

/ + < mp———— — L413> A143
¢1 = 26 sin(nx’/2) sin(y), mytng

’ q1— 01

_ —ox / : / _ A
¢ =26 /Sln(nx /2)sin(2y’), +< L — +oo0 qo) 2
¢3 = 2€" sin(nx’) sin(y"), r1—
Car e e + (ml +po—ro> As+ f(4), (10)

¢4 = 26" ** sin(nx’) sin(2y’), (8) ni+mq

in order to get the free-slip boundary conditions (and no nor-whose coefficients are all provided in Appendix A. The forc-
mal flow to the wall) in the domain over which the flow is ing tendencies,f(m),m = 1,4, associated with the wind
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stress as defined by E@)( are given by 250000 —— vy r—
200000 | - N = |
1,2 1, 1.4 '
fy=-2%2 p,4 813 p. & 4 150000
a1 +b1 ai+b1 a1+by 100000 F
81,7 B 81,8 Bs. 50000 " |
a1 +b1 a1+ b1 ~ 0 bl
52,1 52,5 < ‘
f2)= Bi+ Bs 20000
ni1+mq ni+mq -100000
52,6 52,9 52,10 -150000
Bs Bg Bio,
ni+mi ni+mip ni1+mq -200000

6Kz3  big13 B -250000 6]
3 -300000 ‘ ‘

200000 201200 202400 203600

K34  bigra )B4+ <5K3,7 b1g1,7 >B7 Time (days)

Fig. 1. Temporal evolution of the four modes &f;, for 6* = 0.14

SK b
+< a8, higie ) Bs. ands = 0.001938.

f@=

L @> B1+ <M + Mi) Bs h ~20-500m,|V|~5-10ms?t, pa~ 1Lkgm 2 and po ~
1000kgnT3, one gets values (once normalized fy in the

mis26 ‘SKJ) Bo—+ (% + Mﬁ) Bo range[0.0001, 0.01]. Note thatC in Eq. () is equivalent to
C=|V|paCp.

For the thermal forcing, the same approach aShiarney
and Straug1980 and inReinhold and Pierrehumb&982
is adopted, through the use of the thermal wind relatign.
whose coefficients are provided in Appendix B, whéfe= is therefore allowed to vary frofi©, 0.2].
wf': ¥; —6;. Note that thef (i) should not be confused
with the Coriolis parametefy and the parametef; of Ap-
pendix A. 3 Results of the integration of OA-QG-WS v2

Bio, (11)

mis K
+( 15210 4,10)
niy—+ma u2

2.3 Estimation of the main parameters In this section, some statistical and dynamical properties
of the model are reported as a benchmark. The numerical

The estimation of the main physical parameters is made agcheme used is a second-order temporal scheme known as

follows. For the atmosphere, the paramd&ds related to the Heun scheme (Sw"']ay, 2003 with atime Step of 0.01

the surface drag felt by the lower layer of the two-layer QG time unit. The parameter values used are listed in Table

model. This is estimated based on the Ekman Iayer theO%hHe the behavior of the System is exp|ored by Varymg

(p. 115,Vallis, 2009 as and6*. The dimensional time unit is equal tald215 days.

d

- (12) 3.1 Model trajectories and mean fields
2D

- . Figure 1 displays the temporal evolution of the variables
after dividing by fo, and whereD andd are the thickness of the ocean component for about 10 years starting after

of the lower atmospheric layer and the thickness of the Ek-200 000 d fint tion. Int tinaly a | )
man surface layer, respectively. Typicallyis of the order ays ot integration. Interestingly a fong-range vari-

of 5000 m andd of the order of 100-1000 m. This implies ability emerges as nda_nnltse_m(2014). . .
thatk falls in a range 0f0.01, 0.1]. Here the value is fixed As already alluded ivannitsem(2014), this new version

4 =00 (ad he otrr sspaton parameters are o’ ¢ 700 o o e deveopmentof doule s
to h” =k’ = 2k). For paramete$, one can use the estimate g piay

— * __
done byNese and Duttorf1993. The dimensional forcing g?t_vghiis o]:‘tthe kley p?‘r?met?%— ?02705;( go%‘od and
coefficient is given by = 0.14, after a long integration of abou ays.

Two different initial states in phase space are usedfoe
[V1paCp 0.077 in panels a and b. Depending on parameter (and maybe
=7 (13) initial state in phase space) choice, different mean configu-
rations and sizes of gyres could develop in the basin. But
where p; and po are the densities of the air and of the sea as reflected in Fig. 1, a large variability on a wide range
water, respectivelyk is the thickness of the ocean layer of timescales is also present around these mean fields lead-
and Cp the surface friction coefficient. Witld'p =~ 0.001, ing to a variable transport in the ocean basin. The temporal

k
° Poh
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Fig. 2. Average streamfunction field of the ocean $ox 0.001938 and* = 0.077 (a), 0.077(b), 0.10(c) and 014 (d), as obtained from
a long integration of about.3x 10° days. Note thata) and (b) are obtained with the same parameters but different initial states in phase
space.

Table 1. Dimensional and nondimensional parameters used in theadimensionalized time steps). The atmospheric field displays
coupled ocean—atmosphere model. a flat spectrum for small frequencies and decays at the large
ones. The typical timescale of transition between these two
Dimensional parameters ~ Nondimensional parameters  regimes is of the order of 30 days for this large-scale atmo-

7 — 5000} 1 =15 spheric mode. For the oceanic mode, the power spectrum is
L. 2L w1 continuously decaying closely following a power law, indi-
Lx - n,i Y= —L12/12 = —1741 cating long-range time dependences (in agreement with the
fg= 1.03210 %451 W=k = szz 0.04 visual inspection of Fig. 1). A change of slope is also visible
m } . _ ) in this log—log plot, around a timescale of 30 days, reflect-
Lg="p—=38002m f'=pL/fo=02498 ing the change of statistical properties in the atmosphere. For
%= 0.1 low frequencies (between = 0.0001 and» = 0.2, the slope
"= 0'02909(3% of the decay is close te-2, suggesting a dynamics close to
g*:_[l[g 0&]0 I a red noise. For large frequencies, the slope is much sharper

with a value close te-4. At low frequencies the ocean acts

as an integrator of the “white” noise produced by the atmo-

sphere, by analogy with a Brownian motion or an Ornstein—

variation of these mean values are illustrated in Fig. 3, forUhlenbeck process.

0* = 0.077 andb* = 0.14, starting from two different initial

conditions. The convergence is very slow due to the natu-3.2 Chaotic dynamics

ral long-term variability of the ocean embedded in this sys-

tem. The presence of different attractors cannot be confirme&ensitivity to initial conditions is one of the main properties

or excluded at this stage, due to the blurring of the largeof the atmosphere. In dynamical systems theory, this prop-

natural variability of the system. This analysis would neederty is usually quantified by evaluating the Lyapunov expo-

even longer model integrations, with a higher-order numer-nents. These quantities also allow for distinguishing between

ical scheme in order to better control the numerical errorthe typical solutions generated by the system of ordinary dif-

as suggested by the anonymous referee. Two codes (in Foferential equations for some specific parameters. For a de-

tran and Lua) used to integrate the model (with the secondtailed discussion of these typical solutions and the numerical

order Heun method) and compute these averaged quantitieslgorithms used for their evaluation, sBarker and Chua

are provided as Supplement and can be used freely, provided 989. In short, these quantities characterize the amplifica-

proper reference to the source is made. tion of small amplitude initial condition errors in time and are
Figure 4 displays the power spectra of mogdasand A1, evaluated in the so-called tangent space of the model trajec-

as obtained using a time series of about 73500 days fotory (Legras and Vautardl996, formally characterized by

0* = 0.14 (sampled every 0.56075 days, one point every 500he Jacobian matrix of the flow. In this tangent space, it can

Geosci. Model Dev., 7, 64%662 2014 www.geosci-model-dev.net/7/649/2014/
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Fig. 3. Temporal variation of the mean values of the oceanic meddsr (a) 9* = 0.077,6 = 0.001938 andb) 6* = 0.14,5 = 0.001938.
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Fig. 4. Power spectra foyr; and A, obtained using a time series of about 73 500 daysjfoe 0.14, ands = 0.001938 & 2 x 10_7f0).

be shown that there exists a set of (characteristic) vectorssecond and third Lyapunov exponents as a function*of
u;(t),i=1,...,n, and a corresponding set of (characteris- for § = 0.001938. For values af* smaller than @55, sta-
tic) numbersg;, quantifying the degree of amplification of ble steady states are found with a set of four negative Lya-
small perturbationsix; (¢), along these vectors. These char- punov exponents of very small amplitude (e.g., 8dr=
acteristic numbers are known as the Lyapunov exponents an@.02, o1 = —0.00128 0> = —0.00128,03 = —0.00133, and
are given by o4 = —0.00133 day?! ) and the next ones with an am-

_ 162, (1)| plitude 1000 times Iqrger. A@* = 0.055, a periodic solu-
o; = tleoo . In <|8x (0)|) (14 tion emerges with a first exponent equalstp= —1.110°8

i day 1. For larger values up t®* = 0.065, quasi-periodic so-

If one of these exponents is positive, then the system igutions (2-torus) appear, as well as for parameter values be-
sensitive to initial conditions and the solution is chaotic. If tween 0087 and 0095. Between 65 and (87, chaotic
the largest one is 0 and the others negative, then the solutiogolutions separated by small periodic windows are prevail-
is periodic. If the two largest exponents are 0 and the othersng. Beyond 0095, the dynamics become chaotic and no
negative, the solution lives on a 2-torus. Practically it is not periodic solutions were found for the parameter values ex-
necessary to know these specific vectaist),i =1,....n,  plored. For large values @f* the dynamics becomes wilder
to get the Lyapunov exponents and any basis of indepenwith a dominant exponent closedg = 0.50 day ! for #* =
dent vectors can be used, because the amplification of ang.16, a value larger than the ones found for more realistic
L-dimensional volume in phase space will amplify on aver- synoptic-scale dynamic¥4énnitsem and Nicolisl997 Sny-
age with a rate equal to the sum of the fitstyapunov expo-  der and Hamill2003. Figure 5b displays the Kolmogorov—
nents (e.g.L.egras and Vautard 99. Numerically one uses  Sinai entropy (sum of the positive Lyapunov exponents) and
a basis which is regularly orthonormalized in order to avoid the number of positive exponents as a functiorgtf The
the collapse of all the vectors along the dominant instabilityentropy is increasing steadily in the chaotic regime after
direction (e.g.Parker and Chual989. 6* =0.1 and the number of positive exponents increases.

One of the main properties of this new version of the This contrasts with the model version OA-QG-WS v1 for
model is the possibility of having a “large” number of which only one positive exponent was found for small val-
positive Lyapunov exponents, and hence a “large” attrac-ues of the coupling paramet&r This second version of the
tor dimension. Figure 5a displays the variations of the first,
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Fig. 5. Values of the first three Lyapunov exponei#y, and the Kolmogorov—-Sinai entropy and the number of positive Lyapunov exponents,
(b), as a function o6* for § = 0.001938.

model has therefore more flexibility since one can easily gefound in OA-QG-WS v1, further reflecting the importance of
different configurations in terms of dynamical instability, by the coupling between the ocean and the atmosphere.
changing the main parametgt. A detailed analysis of the To further understand this increase of instability as a func-
transitions from quasi-periodic motions to chaotic behaviorstion of the coupling parameter, the mean absolute amplitude
will be investigated in the future as in recent worBsder et  of the (backward) Lyapunov vectors along the different vari-
al., 2012, Sterk et al.201Q among others). ables of the coupled system has been computed. Figure 7

Figure 6 displays the dependence of the amplitudes oflisplays the results for the first (backward) Lyapunov vector
the Lyapunov exponents and the number of positive ex-(seelLegras and Vautardl996 corresponding to the domi-
ponents as a function of the coupling parameterfor nant Lyapunov exponent for the same parameter as in Fig. 5¢
three different values ob*. As in Vannitsem (2014, and for three different values éf The first 10 points corre-
the trends of the Lyapunov properties as a function ofspond to the barotropic variables of the system, the next 10
3 can be very different for different values @f*. The points to the baroclinic ones, and the last 4 points to the ocean
values of the exponents fo#* =0.0825 are very sen- variables. Clearly the projections along the atmospheric vari-
sitive to §, with sharp transition from (quasi-)periodic ables do not change as a function of the coupdingontrary
solutions to chaotic behaviors aroudd= 0.009. This in-  to the projection along the ocean variables. A similar picture
teresting feature suggests tldaplays a crucial role in set- is found for the other backward Lyapunov vectors. This sug-
ting up the transition from nonchaotic to chaotic regimes in gests that the increase of instability is mainly associated with
the coupled system. A full understanding of this transition an increase of the projection of the vectors along the ocean
should be obtained through a systematic analysis of the bivariables, and not the baroclinic or barotropic instability
furcation diagram of this system (and it will be the subject within the atmosphere. This conjecture is worth investigating
of a future investigation). Far* = 0.10 and* = 0.14 anin-  further in the future through a detailed analysis of the bifur-
crease is found for the first two exponents (but very weakcation diagram and of the characteristic vectors (also called
for 6* = 0.14), while a third positive one emerges whén covariant vectors) of the system, which are (nonorthogonal)
is increased. Interestingly, these results confirm the tendencintrinsic directions of instabilities (seleegras and Vautard
already reported iman Veen(2003, indicating that the pres- 1996.
ence of the ocean has a stronger influence on the dynamics
of the atmosphere close to the periodic windows.

The sensitivity to$ is also illustrated in Fig. 6d in which 4  Conclusions
the Kolmogorov—Sinai entropy is shown, displaying a sys-
tematic increase for the three values explored. These trendg, this paper, a new version (OA-QG-WS v2) of a low-order
are opposite to those discoveredNese and Duttof1993.  coupled ocean—atmosphere model is presented, containing
Their results are most probably associated with the way thez4 ordinary differential equations. This model describes the
heat is transported in the ocean basin and then transferred tetynamics of the large-scale flows at midlatitudes of a baro-
ward the atmosphere in their model, a feature not present iglinic atmosphere interacting with an ocean layer under wind
our model. This is worth investigating further in the future forcings (or momentum exchanges). This coupled model dis-
by adding thermal exchanges between the atmosphere anslays features with strong resemblance with the dynamics
the ocean. found at midlatitudes, with a chaotic dynamics of the atmo-

For all the cases explored, the number of positive Lya-sphere at short timescales of the order of a day and a decadal
punov exponents also has a tendency to increase with the anyariability of the ocean layer. In contrast with the model ver-
plitude of the coupling. This feature is similar to what was sijon OA-QG-WS v1 Yannitsem 2014, higher dimensional

Geosci. Model Dev., 7, 64%62 2014 www.geosci-model-dev.net/7/649/2014/



S. Vannitsem and L. De Cruz: Low-order O—A model

0.12 0.25
01 Ist exponent —+— 02 F T Ist t ——
2nd exponent T ) 2n5d gipgﬁgst
0.08 - 3rd exponent - I / 3rd exgonenl *
/ 0.15 + /
006 4 /
6 (a) 6 f
0.1 (b)
0.04
0.02 | 0.05 F
0 L L L L L L "
0.002 0.004 0.006 0.008 0.01 0.002 0.004 0.006 0.008 0.01
Coupling parameter Coupling parameter
0.6 T
045 — —— B i
04 05
035 | © 200825 ——
04t ©.=0.10
031 1st exponent —+— §* © =014
- L 2nd exponent B L
o 0.25 3rd exponent - E 03
© 02 (c) ¥
015 L 02 r (d)
0L r 0.1 - e
0.05 /
0 0

0.002 0.004 0.006 0.008 0.01

Coupling parameter

0.002 0.004 0.006 0.008 0.01

Coupling parameter

Fig. 6. Values of the first three Lyapunov exponents as a function of the coupling paratrfeted™ = 0.0825(a), 0.10 (b), and 014 (c).
(d) Variation of the Kolmogorov—Sinai entropy as a functiorsdér the same values of*.

0.1
0.01
0.001
0.0001
le-05
le-06
le-07
le-08

LV, {

le-09 r

le-10
le-11

5=0.0004826 —+— o
5 =10.0019305 |
8=0.009653 -

! !

5 10 15 20 25
Vi10 @110 ALg

of the bifurcation parameter close & = 0.065. Close to
this value, the dynamics is also highly sensitive to the val-
ues of the coupling paramet&rwith a possibility of a sharp
transition from periodic to chaotic regimes. For large values
of 6*, the dominant exponent is less sensitives ton con-
trast to the lowest amplitude positive exponent. In addition,
the number of positive Lyapunov exponents has a tendency
to increase witld regardless of what* is, suggesting an in-
crease of the dimension of its attractor in phase space. The
latter characteristic was also found in the first version (OA-
QG-WS v1) of the model.

As suggested by the analyses reported above, this new
model version is an interesting candidate for subsequent

analyses of the dynamical properties of coupled systems. In
) ) ) addition, it can be used for testing tools developed for cou-
5('%;' g’:gr"’]‘g t?]t;s\?;l:’;zb?gp(l)lfu:s: So;sttheemf'r;gfﬁiﬂ‘g";}gdf)r;%afrnov pled ocean—atmosphere systems in the context of data assim-
to 20,0;, and from 21 to 244;, as obtainéd after an int’egration of ilation, post-proces;mg, and ensemble forecasting, among
106 days. The other parameters as in Fig. 6c. otherg. All the coefficients of.the (ocean) model and of .the
coupling terms are also provided, allowing for an easy im-
plementation. Two codes (in Fortran and Lua) combining the

_ _ N atmospheric and oceanic components are also provided as
attractors (associated with a larger number of positive Lya-sypplement.

punov exponents) can be found, and double gyres can de-
velop in the ocean basin in the presence of a chaotic atmo-
sphere.

The Lyapunov instability properties of the flow have also
been explored. Interestingly, for the set of parameters chosen,
atransition from periodic to chaotic regimes occurs at a value
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Appendix A

Coefficients of the ocean component of the model
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