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Abstract. A new low-order coupled ocean–atmosphere
model for midlatitudes is derived. It is based on quasi-
geostrophic equations for both the ocean and the atmosphere,
coupled through momentum transfer at the interface. The
systematic reduction of the number of modes describing the
dynamics leads to an atmospheric low-order component of
20 ordinary differential equations, already discussed inRein-
hold and Pierrehumbert(1982), and an oceanic low-order
component of four ordinary differential equations, as pro-
posed byPierini (2011). The coupling terms for both compo-
nents are derived and all the coefficients of the ocean model
are provided.

Its dynamics is then briefly explored, through the analysis
of its mean field, its variability and its instability properties.
The wind-driven ocean displays a decadal variability induced
by the atmospheric chaotic wind forcing. The chaotic behav-
ior of the coupled system is highly sensitive to the ocean–
atmosphere coupling for low values of the thermal forcing
affecting the atmosphere (corresponding to a weakly chaotic
coupled system). But it is less sensitive for large values of
the thermal forcing (corresponding to a highly chaotic cou-
pled system). In all the cases explored, the number of pos-
itive exponents is increasing with the coupling. Two codes
in Fortran and Lua of the model integration are provided as
Supplement.

1 Introduction

Low-order models were originally developed to isolate key
aspects of the atmospheric and climate dynamics (Stommel,
1961; Saltzman, 1962; Lorenz, 1963; Veronis, 1963). Since
these early developments, many low-order models were

proposed in various fields of science (e.g.,Sprott, 2010),
and in particular in climate science (Charney and DeVore,
1979; Nicolis and Nicolis, 1979; Vallis, 1988; Yoden, 1997;
Imkeller and Monahan, 2002; Crucifix, 2012). These models
allow clarifying important aspects of the underlying struc-
ture of the atmospheric and climate dynamics, such as the
possibility of multiple stable equilibria (e.g.,Simonnet and
Dijkstra, 2002; Dijkstra and Ghil, 2005), the possibility of
catastrophic events (e.g.,Paillard, 1998), or the intrinsic
property of sensitivity to initial conditions that led to the de-
velopment of new approaches for forecasting (Lorenz, 1963;
Nicolis, 1992; Palmer, 1993; Trevisan, 1995; Nicolis and
Nicolis, 2012). Such models are also often used to evalu-
ate new tools developed in the context of weather and cli-
mate forecasting problems, such as data assimilation ap-
proaches (Pires et al., 1996; Carrassi and Vannitsem, 2010,
2011), conceptual analyses of deterministic or stochastic
climate forcings (Wittenberg and Anderson, 1998; Arnold
et al., 2003), extreme value analyses (Lucarini et al., 2012)
or post-processing (Vannitsem, 2009; Van Schaeybroeck and
Vannitsem, 2011), among others.

By definition, these low-order models are built in such
a way to simplify as far as possible the system under in-
vestigation and keep only the key ingredients of interest, as
for instance the analysis of the impact of an orography on
the instability of atmospheric flows as inCharney and Straus
(1980). When dealing with climate the same procedure can
be performed by focusing on one specific aspect, for instance
the global energy balance of the earth assuming that the dy-
namics at smaller space and timescales could be modeled
based on stochastic processes (Nicolis and Nicolis, 1979).
When one is interested in keeping key ingredients of pro-
cesses acting at very different scales, the problem becomes
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more involved and only a few such models have been devel-
oped. A popular approach consists in coupling two low-order
models and modifying artificially the typical timescale of one
of them (e.g.,Goswami et al., 1993; Pena and Kalnay, 2004).
This approach could indeed provide an easy way to build
such multiscale models, but one loses physical significance.
Another interesting model built in this form was proposed
by Roebber(1995), in which the low-orderLorenz(1984a)’
model is coupled with an oceanic three-box model (with six
ordinary differential equations for temperature and salinity)
developed byBirchfield (1989), using empirical relations for
heat fluxes. This led to a coupled model of nine prognos-
tic variables, with two specific timescales, one for the atmo-
sphere and the other for the ocean.

The other approach consists in starting from a detailed
coupled model and systematically reducing the number of
modes of the different components. A first attempt made
by Lorenz(1984b) led to a coupled ocean–atmosphere low-
order model incorporating many processes like condensa-
tion, evaporation, and radiative transfer. However, the ocean
was only considered as a heat bath. This model was sub-
sequently modified byNese and Dutton(1993), in which
oceanic transport is incorporated in a way similar toVeronis
(1963). The final version of this model contains 31 prognos-
tic variables and several diagnostic relations. The coupled
model developed byNese and Dutton(1993) was used to
evaluate the impact of the ocean transport on the predictabil-
ity of the coupled system. They have found that when the
ocean dynamics is activated, the predictability as measured
by the Lyapunov exponents is increased. Another interest-
ing model developed byvan Veen(2003) and derived from
first principles combines the three-variable atmospheric sys-
tem ofLorenz(1984a) and the four-variable ocean model of
Maas(1994). In this seven-variable model, a clear distinc-
tion between three different timescales is made, one for the
atmosphere, one for the deep ocean and one for the ocean
surface layer. In this model, a systematic bifurcation analy-
sis has been undertaken and compared with the bifurcation
structure of the atmospheric component only. In particular it
was shown that the ocean plays an important role close to the
bifurcation points of the model, but much less in the chaotic
regime. In the latter case the ocean integrates the rapid fluc-
tuations of the atmosphere in a quite passive manner without
providing a strong feedback toward the atmosphere. In addi-
tion, only single oceanic gyres can develop.

Building on the latter stream of ideas,Vannitsem(2014)
proposed to couple two low-order models for the atmo-
sphere and the ocean, derived from quasi-geostrophic equa-
tions. This model is intermediate between the “very low-
order” coupled models proposed byvan Veen(2003), and
the more sophisticated process-oriented low-order coupled
models of Lorenz (1984b) and Nese and Dutton(1993).
It is based on the low-order quasi-geostrophic model of
Charney and Straus(1980) and the shallow water quasi-
geostrophic model ofPierini (2011). The latter is able to

simulate the dynamics of single or double oceanic gyres,
typical in the Northern Atlantic and Pacific. The coupling
is done through momentum transfer at the interface, only.
This model has the advantage to be derived from first prin-
ciples as invan Veen(2003) and Lorenz (1984b), but fo-
cusing only on the coupled dynamics associated with the
momentum forcing between the two components. It will
be referred to as OA-QG-WS v1 (OA-QG-WS for Ocean–
Atmosphere Quasi-Geostrophic Wind Stress). An extension
has also been proposed inVannitsem(2014), by adding at-
mospheric modes as inReinhold and Pierrehumbert(1982).
This second version of the model, whose dynamics was only
slightly touched upon inVannitsem(2014), is the central sub-
ject of the present paper, and will be referred to as OA-QG-
WS v2.

The degree of sophistication of this low-order model is
such that it is not straightforward to evaluate all the coupling
coefficients (and the coefficients of the oceanic part), due to
the presence of different orthogonal basis functions and in-
ner products for both climate components. These are there-
fore made available here and some validation test cases are
provided for subsequent use of the model by the atmospheric
and climate communities. The revision of the model also al-
lowed correcting a few coefficients of the first model version
presented inVannitsem(2014), without qualitative modifi-
cations of the results and conclusions. In addition, a few re-
sults concerning the dynamical instability of the system are
provided, and similarities and dissimilarities with the trends
already found inVannitsem(2014) are discussed.

The original partial differential equations of the model and
the choice of the orthogonal modes are presented in Sect. 2.
Section 3 is devoted to some properties of the model that
could serve as a benchmark. The appendix contains all the
coefficients of the model, as described in Sect. 2. In Sect. 4,
some conclusions are drawn.

2 The model equations of OA-QG-WS v2

2.1 The atmospheric model

The atmospheric model, developed byCharney and
Straus(1980) and subsequently extended byReinhold and
Pierrehumbert(1982), is a two-layer quasi-geostrophic flow
defined on a beta plane. The equations in pressure coordi-
nates are

∂

∂t

(
∇

2ψ1
)

+ J (ψ1,∇2ψ1)+β
∂ψ1

∂x

= −k′

d∇
2(ψ1

−ψ3)+
f0

1p
ω, (1)

∂

∂t

(
∇

2ψ3
)

+ J (ψ3,∇2ψ3)+β
∂ψ3

∂x

= +k′

d∇
2(ψ1

−ψ3)−
f0

1p
ω− kd∇

2(ψ3
−9), (2)
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∂

∂t
(ψ1

−ψ3)+ J ((ψ1
+ψ3)/2,ψ1

−ψ3)−
σ1p

f0
ω

= h′

d[(ψ
1
−ψ3)∗ − (ψ1

−ψ3)], (3)

whereψ1, ψ3, ω are the streamfunction fields at 250 and
750 hPa, and the vertical velocity (i.e., dp/dt), respectively.
f0 is the Coriolis parameter at latitudeφ0, β = df/dy atφ0,

σ = −R/p
(
∂T
∂p

−
RT
pcp

)
is the static stability (whereT is the

temperature,R the gas constant andcp the heat capacity at
constant pressure) considered as constant.kd andk′

d are the
coefficients multiplying the surface friction term and the in-
ternal friction between the layers, respectively.(ψ1

−ψ3)∗

is a constant thermal forcing of the atmosphere (Newtonian
heating). An additional term has been introduced in this sys-
tem in order to account for the presence of a surface boundary
velocity of the oceanic flow defined by9 (see next section).
This would correspond to the Ekman pumping on a moving
surface and is the mechanical contribution of the interaction
between the ocean and the atmosphere (e.g.,Deremble et al.,
2012).

Note also that the heating term has not been modified even
if heating is coming mostly from the ocean. It is assumed that
this heating is a fast process as compared to the dynamics of
heat transport in the ocean, thereby transferring almost in-
stantaneously the energy toward the atmosphere. This strong
assumption allows isolating the impact of wind-driven in-
teractions between the ocean and the atmosphere. This as-
sumption could be relaxed in a future version of the model
in a similar way as invan Veen(2003) or Deremble et al.
(2012).

These equations are then adimensionalized by scaling
x′

= x/L and y′
= y/L, t by f−1

0 , ω by f01p andψ by
L2f0 and the parameters are then also rescaled asσ0 =

(σ1p2)/(2L2f 2
0 ),2k = kd/f0,k

′
= k′

d/f0,h
′′

= h′

d/f0. The
fields are expanded in Fourier series over the domainy′

=

[0,π ] and x′
= [0,2π/n], and only 10 modes,Fk, are re-

tained, obeying the boundary conditions∂Fk/(∂x′)= 0 at
y′

= 0,π . n is the aspect ratio between the lengths of the
domain iny and inx, n= 2Ly/Lx = 2πL/(2πL/n). These
modes are

F1 =
√

2cos(y′),

F2 = 2cos(nx′)sin(y′),

F3 = 2sin(nx′)sin(y′),

F4 =
√

2cos(2y′),

F5 = 2cos(nx′)sin(2y′),

F6 = 2sin(nx′)sin(2y′),

F7 = 2cos(2nx′)sin(y′),

F8 = 2sin(2nx′)sin(y′),

F9 = 2cos(2nx′)sin(2y′),

F10 = 2sin(2nx′)sin(2y′),

and the fields are then expressed as

ψ =

10∑
k=1

ψkFk,

θ =

10∑
k=1

θkFk,

ω =

10∑
k=1

ωkFk,

(ψ1
−ψ3)∗ = 2

10∑
k=1

θ∗

k Fk,

where θ = (ψ1
−ψ3)/2 andψ = (ψ1

+ψ3)/2. Using the
usual inner product,

〈f,g〉 =
n

2π2

π∫
0

dy′

2π/n∫
0

dx′fg, (4)

one gets the set of equations reported in the Appendix of the
paper ofReinhold and Pierrehumbert(1982) and inReinhold
and Pierrehumbert(1985), leading to 20 ordinary differential
equations for the dependent variablesψk andθk. The dynam-
ics of this atmospheric model has also been explored with
emphasis on the predictability of the atmosphere in the pres-
ence of weather regimes inTrevisan et al.(2001).

The presence of the ocean is felt through the coupling as-
sociated with the motion of the ocean surface,kd∇

29 where
9 is the streamfunction of the oceanic flow as defined in the
next section. It is also projected on the different atmospheric
modes using the inner product of Eq. (4). The coefficients are
given in Appendix B.

Note that the thermal forcing term is fixed as inCharney
and Straus(1980) andReinhold and Pierrehumbert(1982) in
which the only nonzero term isθ∗

1 , which will be referred
to asθ∗ in the sequel. This corresponds to a thermal forcing
only dependent on the latitude with a larger contribution in
the southern part of the domain.

2.2 Ocean model

The ocean model is based on the reduced-gravity quasi-
geostrophic shallow water model (Vallis, 2006). The basic
assumptions behind this equation are that (i) the ocean dy-
namics can be described by a shallow water fluid layer su-
perimposed over a quiescent deep fluid layer, (ii) the Rossby
numberRo= U/(f0L) is small, and (iii) the space scale of
the process under investigation should not be significantly
larger than the deformation radius (typically of a few hundred
kilometers for a fluid layer depth of the order of 100 m). The
forcing is provided by the wind generated by the atmospheric
component of the coupled system. The equation reads

∂

∂t

(
∇

29 −
9

L2
R

)
+ J (9,∇29)+β

∂9

∂x
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= −r∇29 +
curlzτ

ρh
, (5)

where9 is the velocity streamfunction (or pressure),ρ the
density of water,h the depth of the fluid layer,LR the reduced
Rossby deformation radius,r a friction coefficient at the bot-
tom of the fluid layer, and curlzτ the vertical component of
the curl of the wind stress. Usually in low-order oceanic mod-
eling the latter is provided as an ideal profilein the meridional
direction (e.g.,Simonnet and Dijkstra, 2002). In the present
work, this is provided as a “real” wind field generated by the
atmospheric low-order model. Assuming that the wind stress
is given by(τx,τy)= C(u−U,v−V ) whereu andv are the
horizontal components of the lower layer geostrophic wind,
−∂ψ3/∂y and∂ψ3/∂x, respectively, andU andV the cor-
responding quantities in the ocean, one gets

curlzτ

ρh
=
C

ρh
∇

2(ψ3
−9). (6)

Here the wind stress is proportional to the relative velocity
between the flow in the ocean layer and the wind. This slight
modification as compared with the version model OA-QG-
WS v1 in which the stress was only based on the absolute
wind velocity, has been made in order to avoid spurious forc-
ings when the velocities in the atmosphere and the ocean are
similar. It is however a correction which is quite marginal in
view of the (typically) small amplitudes of the flow field in
the ocean.

Using the same domain and the same nondimensionaliza-
tion procedure as in the atmospheric model, one gets

∂

∂t ′

(
∇

′29 ′
+ γ9 ′

)
+ J ′(9 ′,∇ ′29 ′)+β ′

∂9 ′

∂x′

= −r ′∇ ′29 ′
+ δ∇ ′2(ψ ′

−9 ′)

= −(r ′ + δ)∇ ′29 ′
+ δ∇ ′2ψ ′, (7)

wherex′
= x/L, y′

= y/L, t ′ = tf0, 9 ′
=9/(L2f0), ψ ′

=

ψ3/(L2f0), β ′
= βL/f0, γ = −L2/L2

R, r ′ = r/f0 and δ =

C/(ρhf0).
Let us now define the truncated basis functions on which

the streamfunction field is projected. Several truncations
were proposed in the literature from two-mode (Jiang et al.,
1995) up to four-mode truncations (Simonnet et al., 2005;
Pierini, 2011), the latter approach allowing for chaotic be-
haviors. In the present work, we use the following set of
modes,

φ1 = 2e−αx′

sin(nx′/2)sin(y′),

φ2 = 2e−αx′

sin(nx′/2)sin(2y′),

φ3 = 2e−αx′

sin(nx′)sin(y′),

φ4 = 2e−αx′

sin(nx′)sin(2y′), (8)

in order to get the free-slip boundary conditions (and no nor-
mal flow to the wall) in the domain over which the flow is

defined atx = 0,2π/n andy = 0,π . In addition a specific
inner product is adopted for the oceanic model in a similar
way as inPierini (2011),

(f,g)=
n

2π2

π∫
0

dy′

2π/n∫
0

dx′fge2αx′

. (9)

Introducing the truncated fields,
∑
mAmφm, for m= 1,4,

into Eq. (7) and projecting on each mode using the inner
product Eq. (9), one gets a set of four ordinary differential
equations for the variablesAm,

dA1

dt
= −

L114−L314

a1 + b1
A1A4 −

L112−L312

a1 + b1
A1A2

−
L123−L323

a1 + b1
A2A3 −

L134−L334

a1 + b1
A3A4

+
e1 − d1

a1 + b1
A1 +

f1 − c1

a1 + b1
A3 + f (1),

dA2

dt
= −

L211−L411

m1 + n1
A2

1 −
L233−L433

m1 + n1
A2

3

−
L213−L413

m1 + n1
A1A3 +

q1 − o1

n1 +m1
A2

+
r1 −p1

n1 +m1
A4 + f (2),

dA3

dt
=

(
−b1

L114−L314

a1 + b1
−L314

)
A1A4

+

(
−b1

L112−L312

a1 + b1
−L312

)
A1A2

+

(
−b1

L123−L323

a1 + b1
−L323

)
A2A3

+

(
−b1

L134−L334

a1 + b1
−L334

)
A3A4

+

(
b1
e1 − d1

a1 + b1
+ d0 − e0

)
A1

+

(
b1
f1 − c1

a1 + b1
+ c0 − v0

)
A3 + f (3),

dA4

dt
=

(
−m1

L211−L411

m1 + n1
−L411

)
A2

1

+

(
−m1

L233−L433

m1 + n1
−L433

)
A2

3

+

(
−m1

L213−L413

m1 + n1
−L413

)
A1A3

+

(
m1

q1 − o1

n1 +m1
+ o0 − q0

)
A2

+

(
m1

r1 −p1

n1 +m1
+p0 − r0

)
A4 + f (4), (10)

whose coefficients are all provided in Appendix A. The forc-
ing tendencies,f (m),m= 1,4, associated with the wind
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stress as defined by Eq. (6), are given by

f (1)=
g1,2

a1 + b1
B2 +

g1,3

a1 + b1
B3 +

g1,4

a1 + b1
B4

+
g1,7

a1 + b1
B7 +

g1,8

a1 + b1
B8 ,

f (2)=
s2,1

n1 +m1
B1 +

s2,5

n1 +m1
B5

+
s2,6

n1 +m1
B6 +

s2,9

n1 +m1
B9

s2,10

n1 +m1
B10 ,

f (3)=

(
δK3,2

u1
+
b1g1,2

a1 + b1

)
B2 +

(
δK3,3

u1
+
b1g1,3

a1 + b1

)
B3

+

(
δK3,4

u1
+
b1g1,4

a1 + b1

)
B4 +

(
δK3,7

u1
+
b1g1,7

a1 + b1

)
B7

+

(
δK3,8

u1
+
b1g1,8

a1 + b1

)
B8 ,

f (4)=

(
m1s2,1

n1 +m1
+
δK4,1

u2

)
B1 +

(
m1s2,5

n1 +m1
+
δK4,5

u2

)
B5

+

(
m1s2,6

n1 +m1
+
δK4,6

u2

)
B6 +

(
m1s2,9

n1 +m1
+
δK4,9

u2

)
B9

+

(
m1s2,10

n1 +m1
+
δK4,10

u2

)
B10 , (11)

whose coefficients are provided in Appendix B, whereBi =

ψ3
i = ψi − θi . Note that thef (i) should not be confused

with the Coriolis parameterf0 and the parameterf1 of Ap-
pendix A.

2.3 Estimation of the main parameters

The estimation of the main physical parameters is made as
follows. For the atmosphere, the parameterk is related to
the surface drag felt by the lower layer of the two-layer QG
model. This is estimated based on the Ekman layer theory
(p. 115,Vallis, 2006) as

k =
d

2D
(12)

after dividing byf0, and whereD andd are the thickness
of the lower atmospheric layer and the thickness of the Ek-
man surface layer, respectively. TypicallyD is of the order
of 5000 m andd of the order of 100–1000 m. This implies
that k falls in a range of[0.01,0.1]. Here the value is fixed
to k = 0.02 (and the other dissipation parameters are fixed
to h′′

= k′
= 2k). For parameterδ, one can use the estimate

done byNese and Dutton(1993). The dimensional forcing
coefficient is given by

ko =
|V |ρa CD

ρoh
, (13)

whereρa andρo are the densities of the air and of the sea
water, respectively.h is the thickness of the ocean layer
andCD the surface friction coefficient. WithCD ≈ 0.001,
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Fig. 1. Temporal evolution of the four modes Ai for θ∗ = 0.14 and δ = 0.001938.
figure

31

Fig. 1. Temporal evolution of the four modes ofAi for θ∗
= 0.14

andδ = 0.001938.

h≈ 20–500 m,|V | ≈ 5–10 ms−1, ρa ≈ 1kgm−3 and ρo ≈

1000kgm−3, one gets values (once normalized byf0) in the
range[0.0001,0.01]. Note thatC in Eq. (6) is equivalent to
C = |V |ρa CD.

For the thermal forcing, the same approach as inCharney
and Straus(1980) and inReinhold and Pierrehumbert(1982)
is adopted, through the use of the thermal wind relation.θ∗

is therefore allowed to vary from[0,0.2].

3 Results of the integration of OA-QG-WS v2

In this section, some statistical and dynamical properties
of the model are reported as a benchmark. The numerical
scheme used is a second-order temporal scheme known as
the Heun scheme (seeKalnay, 2003) with a time step of 0.01
time unit. The parameter values used are listed in Table1,
while the behavior of the system is explored by varyingδ
andθ∗. The dimensional time unit is equal to 0.11215 days.

3.1 Model trajectories and mean fields

Figure 1 displays the temporal evolution of theAi variables
of the ocean component for about 10 years starting after
200 000 days of integration. Interestingly a long-range vari-
ability emerges as inVannitsem(2014).

As already alluded inVannitsem(2014), this new version
of the model allows for the development of double gyres.
Figure 2 displays the mean streamfunction fields for differ-
ent values of the key parametersθ∗

= 0.077,θ∗
= 0.10, and

θ∗
= 0.14, after a long integration of about 3.5× 108 days.

Two different initial states in phase space are used forθ∗
=

0.077 in panels a and b. Depending on parameter (and maybe
initial state in phase space) choice, different mean configu-
rations and sizes of gyres could develop in the basin. But
as reflected in Fig. 1, a large variability on a wide range
of timescales is also present around these mean fields lead-
ing to a variable transport in the ocean basin. The temporal
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Fig. 2. Average streamfunction field of the ocean forδ = 0.001938 andθ∗
= 0.077 (a), 0.077(b), 0.10(c) and 0.14 (d), as obtained from

a long integration of about 3.5× 108 days. Note that(a) and(b) are obtained with the same parameters but different initial states in phase
space.

Table 1. Dimensional and nondimensional parameters used in the
coupled ocean–atmosphere model.

Dimensional parameters Nondimensional parameters

L=
5000
π km n= 1.5

Lx =
2πL
n α = 1

Ly = πL γ = −L2/L2
R

= −1741
f0 = 1.03210−4s−1 h′′

= k′ = 2k = 0.04

LR =

√
g′H
f0

= 38 002 m β ′
= βL/f0 = 0.2498

σ0 = 0.1
r ′ = 0.0000969
δ = [10−4,10−2

]

θ∗
= [0.,0.2]

variation of these mean values are illustrated in Fig. 3, for
θ∗

= 0.077 andθ∗
= 0.14, starting from two different initial

conditions. The convergence is very slow due to the natu-
ral long-term variability of the ocean embedded in this sys-
tem. The presence of different attractors cannot be confirmed
or excluded at this stage, due to the blurring of the large
natural variability of the system. This analysis would need
even longer model integrations, with a higher-order numer-
ical scheme in order to better control the numerical error
as suggested by the anonymous referee. Two codes (in For-
tran and Lua) used to integrate the model (with the second-
order Heun method) and compute these averaged quantities
are provided as Supplement and can be used freely, provided
proper reference to the source is made.

Figure 4 displays the power spectra of modesψ1 andA1,
as obtained using a time series of about 73 500 days for
θ∗

= 0.14 (sampled every 0.56075 days, one point every 500

adimensionalized time steps). The atmospheric field displays
a flat spectrum for small frequencies and decays at the large
ones. The typical timescale of transition between these two
regimes is of the order of 30 days for this large-scale atmo-
spheric mode. For the oceanic mode, the power spectrum is
continuously decaying closely following a power law, indi-
cating long-range time dependences (in agreement with the
visual inspection of Fig. 1). A change of slope is also visible
in this log–log plot, around a timescale of 30 days, reflect-
ing the change of statistical properties in the atmosphere. For
low frequencies (betweenω = 0.0001 andω = 0.2, the slope
of the decay is close to−2, suggesting a dynamics close to
a red noise. For large frequencies, the slope is much sharper
with a value close to−4. At low frequencies the ocean acts
as an integrator of the “white” noise produced by the atmo-
sphere, by analogy with a Brownian motion or an Ornstein–
Uhlenbeck process.

3.2 Chaotic dynamics

Sensitivity to initial conditions is one of the main properties
of the atmosphere. In dynamical systems theory, this prop-
erty is usually quantified by evaluating the Lyapunov expo-
nents. These quantities also allow for distinguishing between
the typical solutions generated by the system of ordinary dif-
ferential equations for some specific parameters. For a de-
tailed discussion of these typical solutions and the numerical
algorithms used for their evaluation, seeParker and Chua
(1989). In short, these quantities characterize the amplifica-
tion of small amplitude initial condition errors in time and are
evaluated in the so-called tangent space of the model trajec-
tory (Legras and Vautard, 1996), formally characterized by
the Jacobian matrix of the flow. In this tangent space, it can
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Fig. 3. Convergence of the mean values of the oceanic modes Ai for (a) θ∗ = 0.077, δ = 0.001938 and
(b) θ∗ = 0.14, δ = 0.001938.
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Fig. 3.Temporal variation of the mean values of the oceanic modesAi for (a) θ∗
= 0.077,δ = 0.001938 and(b) θ∗

= 0.14,δ = 0.001938.
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Fig. 4. Power spectra for ψ1 and A2 obtained using a time series of about 73 215 days, for θ∗ = 0.14,
δ = 0.001938 (= 2× 10−7f0).
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Fig. 4.Power spectra forψ1 andA2 obtained using a time series of about 73 500 days, forθ∗
= 0.14, andδ = 0.001938 (= 2× 10−7f0).

be shown that there exists a set of (characteristic) vectors,
ui(t), i = 1, . . . ,n, and a corresponding set of (characteris-
tic) numbers,σi , quantifying the degree of amplification of
small perturbations,δxi(t), along these vectors. These char-
acteristic numbers are known as the Lyapunov exponents and
are given by

σi = lim
t→∞

1

t
ln

(
|δxi(t)|

|δxi(0)|

)
. (14)

If one of these exponents is positive, then the system is
sensitive to initial conditions and the solution is chaotic. If
the largest one is 0 and the others negative, then the solution
is periodic. If the two largest exponents are 0 and the others
negative, the solution lives on a 2-torus. Practically it is not
necessary to know these specific vectors,ui(t), i = 1, . . . ,n,
to get the Lyapunov exponents and any basis of indepen-
dent vectors can be used, because the amplification of any
L-dimensional volume in phase space will amplify on aver-
age with a rate equal to the sum of the firstL Lyapunov expo-
nents (e.g.,Legras and Vautard, 1996). Numerically one uses
a basis which is regularly orthonormalized in order to avoid
the collapse of all the vectors along the dominant instability
direction (e.g.,Parker and Chua, 1989).

One of the main properties of this new version of the
model is the possibility of having a “large” number of
positive Lyapunov exponents, and hence a “large” attrac-
tor dimension. Figure 5a displays the variations of the first,

second and third Lyapunov exponents as a function ofθ∗

for δ = 0.001938. For values ofθ∗ smaller than 0.055, sta-
ble steady states are found with a set of four negative Lya-
punov exponents of very small amplitude (e.g., forθ∗

=

0.02, σ1 = −0.00128,σ2 = −0.00128,σ3 = −0.00133, and
σ4 = −0.00133 day−1 ) and the next ones with an am-
plitude 1000 times larger. Atθ∗

= 0.055, a periodic solu-
tion emerges with a first exponent equal toσ1 = −1.110−8

day−1. For larger values up toθ∗
= 0.065, quasi-periodic so-

lutions (2-torus) appear, as well as for parameter values be-
tween 0.087 and 0.095. Between 0.065 and 0.087, chaotic
solutions separated by small periodic windows are prevail-
ing. Beyond 0.095, the dynamics become chaotic and no
periodic solutions were found for the parameter values ex-
plored. For large values ofθ∗ the dynamics becomes wilder
with a dominant exponent close toσ1 = 0.50 day−1 for θ∗

=

0.16, a value larger than the ones found for more realistic
synoptic-scale dynamics (Vannitsem and Nicolis, 1997; Sny-
der and Hamill, 2003). Figure 5b displays the Kolmogorov–
Sinai entropy (sum of the positive Lyapunov exponents) and
the number of positive exponents as a function ofθ∗. The
entropy is increasing steadily in the chaotic regime after
θ∗

= 0.1 and the number of positive exponents increases.
This contrasts with the model version OA-QG-WS v1 for
which only one positive exponent was found for small val-
ues of the coupling parameterδ. This second version of the
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Fig. 5.Values of the first three Lyapunov exponents,(a), and the Kolmogorov–Sinai entropy and the number of positive Lyapunov exponents,
(b), as a function ofθ∗ for δ = 0.001938.

model has therefore more flexibility since one can easily get
different configurations in terms of dynamical instability, by
changing the main parameterθ∗. A detailed analysis of the
transitions from quasi-periodic motions to chaotic behaviors
will be investigated in the future as in recent works (Broer et
al., 2011; Sterk et al., 2010, among others).

Figure 6 displays the dependence of the amplitudes of
the Lyapunov exponents and the number of positive ex-
ponents as a function of the coupling parameterδ, for
three different values ofθ∗. As in Vannitsem (2014),
the trends of the Lyapunov properties as a function of
δ can be very different for different values ofθ∗. The
values of the exponents forθ∗

= 0.0825 are very sen-
sitive to δ, with sharp transition from (quasi-)periodic
solutions to chaotic behaviors aroundδ = 0.009. This in-
teresting feature suggests thatδ plays a crucial role in set-
ting up the transition from nonchaotic to chaotic regimes in
the coupled system. A full understanding of this transition
should be obtained through a systematic analysis of the bi-
furcation diagram of this system (and it will be the subject
of a future investigation). Forθ∗

= 0.10 andθ∗
= 0.14 an in-

crease is found for the first two exponents (but very weak
for θ∗

= 0.14), while a third positive one emerges whenδ
is increased. Interestingly, these results confirm the tendency
already reported invan Veen(2003), indicating that the pres-
ence of the ocean has a stronger influence on the dynamics
of the atmosphere close to the periodic windows.

The sensitivity toδ is also illustrated in Fig. 6d in which
the Kolmogorov–Sinai entropy is shown, displaying a sys-
tematic increase for the three values explored. These trends
are opposite to those discovered inNese and Dutton(1993).
Their results are most probably associated with the way the
heat is transported in the ocean basin and then transferred to-
ward the atmosphere in their model, a feature not present in
our model. This is worth investigating further in the future
by adding thermal exchanges between the atmosphere and
the ocean.

For all the cases explored, the number of positive Lya-
punov exponents also has a tendency to increase with the am-
plitude of the couplingδ. This feature is similar to what was

found in OA-QG-WS v1, further reflecting the importance of
the coupling between the ocean and the atmosphere.

To further understand this increase of instability as a func-
tion of the coupling parameter, the mean absolute amplitude
of the (backward) Lyapunov vectors along the different vari-
ables of the coupled system has been computed. Figure 7
displays the results for the first (backward) Lyapunov vector
(seeLegras and Vautard, 1996) corresponding to the domi-
nant Lyapunov exponent for the same parameter as in Fig. 5c
and for three different values ofδ. The first 10 points corre-
spond to the barotropic variables of the system, the next 10
points to the baroclinic ones, and the last 4 points to the ocean
variables. Clearly the projections along the atmospheric vari-
ables do not change as a function of the couplingδ, contrary
to the projection along the ocean variables. A similar picture
is found for the other backward Lyapunov vectors. This sug-
gests that the increase of instability is mainly associated with
an increase of the projection of the vectors along the ocean
variables, and not the baroclinic or barotropic instability
within the atmosphere. This conjecture is worth investigating
further in the future through a detailed analysis of the bifur-
cation diagram and of the characteristic vectors (also called
covariant vectors) of the system, which are (nonorthogonal)
intrinsic directions of instabilities (seeLegras and Vautard,
1996).

4 Conclusions

In this paper, a new version (OA-QG-WS v2) of a low-order
coupled ocean–atmosphere model is presented, containing
24 ordinary differential equations. This model describes the
dynamics of the large-scale flows at midlatitudes of a baro-
clinic atmosphere interacting with an ocean layer under wind
forcings (or momentum exchanges). This coupled model dis-
plays features with strong resemblance with the dynamics
found at midlatitudes, with a chaotic dynamics of the atmo-
sphere at short timescales of the order of a day and a decadal
variability of the ocean layer. In contrast with the model ver-
sion OA-QG-WS v1 (Vannitsem, 2014), higher dimensional
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Fig. 6. Values of the first three Lyapunov exponents as a function of the coupling parameterδ for θ∗
= 0.0825(a), 0.10 (b), and 0.14 (c).

(d) Variation of the Kolmogorov–Sinai entropy as a function ofδ for the same values ofθ∗.
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Fig. 7. Mean absolute amplitude of the first (backward) Lyapunov
vector along the variables of the system, from 1 to 10,ψi , from 11
to 20,θi , and from 21 to 24,Ai , as obtained after an integration of
106 days. The other parameters as in Fig. 6c.

attractors (associated with a larger number of positive Lya-
punov exponents) can be found, and double gyres can de-
velop in the ocean basin in the presence of a chaotic atmo-
sphere.

The Lyapunov instability properties of the flow have also
been explored. Interestingly, for the set of parameters chosen,
a transition from periodic to chaotic regimes occurs at a value

of the bifurcation parameter close toθ∗
= 0.065. Close to

this value, the dynamics is also highly sensitive to the val-
ues of the coupling parameterδ, with a possibility of a sharp
transition from periodic to chaotic regimes. For large values
of θ∗, the dominant exponent is less sensitive toδ, in con-
trast to the lowest amplitude positive exponent. In addition,
the number of positive Lyapunov exponents has a tendency
to increase withδ regardless of whatθ∗ is, suggesting an in-
crease of the dimension of its attractor in phase space. The
latter characteristic was also found in the first version (OA-
QG-WS v1) of the model.

As suggested by the analyses reported above, this new
model version is an interesting candidate for subsequent
analyses of the dynamical properties of coupled systems. In
addition, it can be used for testing tools developed for cou-
pled ocean–atmosphere systems in the context of data assim-
ilation, post-processing, and ensemble forecasting, among
others. All the coefficients of the (ocean) model and of the
coupling terms are also provided, allowing for an easy im-
plementation. Two codes (in Fortran and Lua) combining the
atmospheric and oceanic components are also provided as
Supplement.
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Appendix A

Coefficients of the ocean component of the model

a1 =
3π

8αn
(α2

− n2/4− 1+ γ ), b1 =
8αn

3πu1

c1 =
αβ ′

u1
−
β ′

2α
, d1 =

−4nβ ′

3πu1
−

3πβ ′

8n

e1 = −(r ′ + δ)

(
(α2

− n2/4− 1)
3π

8αn
+

8αn

3πu1

)
,

f1 = −(r ′ + δ)

(
1−

(α2
− n2

− 1)

u1

)
c0 =

αβ ′

u1
, d0 =

−4nβ ′

3πu1

e0 = −(r ′ + δ)
8αn

3πu1
, v0 = (r ′ + δ)

(α2
− n2

− 1)

u1

n1 =
3π

8αn
(α2

− n2/4− 4+ γ ), m1 =
8αn

3πu2

o1 =
−4nβ ′

3πu2
−

3πβ ′

8n
, p1 =

αβ ′

u2
−
β ′

2α

q1 = −(r ′ + δ)

(
(α2

− n2/4− 4)
3π

8αn
+

8αn

3πu2

)
,

r1 = −(r ′ + δ)

(
1−

(α2
− n2

− 4)

u2

)
o0 =

−4nβ ′

3πu2
, p0 =

αβ ′

u2

q0 = −(r ′ + δ)
8αn

3πu2
, r0 = (r ′ + δ)

(α2
− n2

− 4)

u2

u1 = α2
− n2

− 1+ γ, u2 = α2
− n2

− 4+ γ

and

L112 =
3π

8αn
(C112+C121), L114 =

3π

8αn
(C114+C141)

L123 =
3π

8αn
(C123+C132), L134 =

3π

8αn
(C134+C143)

L312 =
1

u1
(C312+C321), L314 =

1

u1
(C314+C341)

L323 =
1

u1
(C323+C332), L334 =

1

u1
(C334+C343)

L211 =
3π

8αn
C211, L233 =

3π

8αn
C233

L213 =
3π

8αn
(C213+C231), L413 =

1

u2
(C413+C431)

L411 =
1

u2
C411, L433 =

1

u2
C433

where

Cijk =
n

2π2

π∫
0

dy′

2π/n∫
0

dx′e2αx′

φiJ (φj ,∇
2φk)

giving

C112 =
2

π

αn4(4α2
− 3n2

− 48)

(4α2 + 9n2)(4α2 + n2)
(1+ e−α2π/n),

C121 =
1

π

αn4(−4α2
+ 15n2

+ 24)

(4α2 + 9n2)(4α2 + n2)
(1+ e−α2π/n),

C114 =
1

π

αn4(α2
+ n2

− 12)

(α2 + 4n2)(α2 + n2)
(1− e−α2π/n),

C141 = −
1

4π

αn4(2α2
− 19n2

− 12)

(α2 + 4n2)(α2 + n2)
(1− e−α2π/n),

C123 = −
1

2π

n4(α4
− 2α2n2

− 6α2
− 3n4

− 3n2)

α(α2 + 4n2)(α2 + n2)

(1− e−α2π/n),

C132 =
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8π

n4(16α2n2
− 8α4

+ 96α2
+ 3n4

+ 48n2)

α(α2 + 4n2)(α2 + n2)

(1− e−α2π/n),

C134 =

−8

π

αn4(39n4
− 16n2(−21+α2)− 16α2(−12+α2))

(4α2 + n2)(4α2 + 9n2)(4α2 + 25n2)

(1+ e−α2π/n),

C143 =

4

π

αn4(303n4
− 16α2(−6+α2)+ 8n2(21+ 13α2))

(4α2 + n2)(4α2 + 9n2)(4α2 + 25n2)

(1+ e−α2π/n),
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8π
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+ 3n4

+ 48n2)
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(1+ e−α2π/n),
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8

π

αn4(16α4
− 56α2n2
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(4α2 + n2)(4α2 + 9n2)(4α2 + 25n2)

Geosci. Model Dev., 7, 649–662, 2014 www.geosci-model-dev.net/7/649/2014/



S. Vannitsem and L. De Cruz: Low-order O–A model 659

(1+ e−α2π/n),

C314 =
8

π

αn4(16α4
− 8α2n2
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− 144n2

− 192α2)
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Appendix B

Coefficients of the coupling between the ocean
and the atmosphere

g1,2 = δ

(
3π

8αn
K1,2 −

K3,2

u1

)
,

s2,1 = δ
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3π
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n

2π2

π∫
0

dy′

2π/n∫
0

dx′e2αx′

φi∇
2Fj

giving

K1,2 = −
2

π

(n2
+ 1)n2(4α2

− 3n2)

(4α2 + 9n2)(4α2 + n2)
(1+ eα2π/n),

K1,3 =
16

π

(n2
+ 1)αn3

(4α2 + 9n2)(4α2 + n2)
(1+ eα2π/n),

K1,4 =
16

√
2

3π2

n2

(4α2 + n2)
(1+ eα2π/n),

K2,1 = −
8
√

2

3π2

n2

(4α2 + n2)
(1+ eα2π/n),

K2,5 = −
2

π

(n2
+ 4)n2(4α2

− 3n2)

(4α2 + 9n2)(4α2 + n2)
(1+ eα2π/n),

K2,6 =
16

π

(n2
+ 4)αn3

(4α2 + n2)(4α2 + 9n2)
(1+ eα2π/n),

K3,2 =
−1

π

n2(n2
+ 1)

(α2 + 4n2)
(1− eα2π/n),

K3,3 =
2

π

n3(n2
+ 1)

α(α2 + 4n2)
(1− eα2π/n),

K3,4 =
8
√

2

3π2

n2

(α2 + n2)
(1− eα2π/n),

K4,1 = −
4
√

2

3π2

n2

(α2 + n2)
(1− eα2π/n),

K4,5 =
−1

π

n2(n2
+ 4)

(α2 + 4n2)
(1− eα2π/n),

K4,6 =
2

π

n3(n2
+ 4)

α(α2 + 4n2)
(1− eα2π/n),

K1,7 =
n2

π

(30n2
− 8α2)(4n2

+ 1)

(4α2 + 25n2)(4α2 + 9n2)
(1+ eα2π/n),

K1,8 =
32αn3

π

(4n2
+ 1)

(4α2 + 25n2)(4α2 + 9n2)
(1+ eα2π/n),

K2,9 =
4n2

π

(30n2
− 8α2)(n2

+ 1)

(4α2 + 25n2)(4α2 + 9n2)
(1+ eα2π/n),

K2,10 =
128αn3

π

(n2
+ 1)

(4α2 + 25n2)(4α2 + 9n2)
(1+ eα2π/n),

K3,7 = −
n2

π

(α2
− 3n2)(4n2

+ 1)

(α2 + n2)(α2 + 9n2)
(1− eα2π/n),

K3,8 =
4αn3

π

(4n2
+ 1)

(α2 + n2)(α2 + 9n2)
(1− eα2π/n),

K4,9 = −
4n2

π

(α2
− 3n2)(n2

+ 1)

(α2 + n2)(α2 + 9n2)
(1− eα2π/n),
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K4,10 =
16αn3

π

(n2
+ 1)

(α2 + n2)(α2 + 9n2)
(1− eα2π/n),

and where theBi = ψ3
i = ψi−θi are the atmospheric stream-

function variables (mode amplitudes) in the lower layer.
The coupling term appearing in the lower layer of the at-

mospheric model equations,kd∇
29, is expressed in theith

atmospheric ordinary differential equation as
∑
j DijAj us-

ing the inner product of Eq. (4), where

D1,2 =
−2

√
2

3π2

n2(4α2
+ n2

+ 16)

(4α2 + n2)
(1+ e−α2π/n),

D1,4 =
−4

√
2

3π2

n2(α2
+ n2

+ 4)

(α2 + n2)
(1− e−α2π/n),

D2,1 =
n

π

(−8α4n− 28α2n3
− 8α2n+ 3/2n5

+ 6n3)

(4α2 + n2)(4α2 + 9n2)

(1+ e−α2π/n),

D2,3 =
−n2

π

(α2
+ 5n2

+ 1)

(α2 + 4n2)
(1− e−α2π/n),

D3,1 =
−16

π

αn3(n2
+ 1)

(4α2 + n2)(4α2 + 9n2)
(1+ e−α2π/n),

D3,3 =
−2

π

n3(n2
+ 1)

α(α2 + 4n2)
(1− e−α2π/n),

D4,1 =
4
√

2

3π2

n2(α2
+ n2/4+ 1)

(4α2 + n2)
(1+ e−α2π/n),

D4,3 =
2
√

2

3π2

n2(α2
+ n2

+ 1)

(α2 + n2)
(1− e−α2π/n),

D5,2 =
n2

2π

(−16α2(α2
+ 4)+ 3n4

− 8n2(7α2
− 6))

(4α2 + n2)(4α2 + 9n2)

(1+ e−α2π/n),

D5,4 =
−n2

π

(α2
+ 5n2

+ 4)

(α2 + 4n2)
(1− e−α2π/n),

D6,2 =
−16

π

αn3(n2
+ 4)

(4α2 + n2)(4α2 + 9n2)
(1+ e−α2π/n),

D6,4 =
−2

π

n3(n2
+ 4)

α(α2 + 4n2)
(1− e−α2π/n),

D7,1 =
n

π

(−8α4n− 100α2n3
− 8α2n+ 15/2n5

+ 30n3)

(4α2 + 25n2)(4α2 + 9n2)

(1+ e−α2π/n),

D7,3 =
n2

π

(−α4
− 14α2n2

−α2
+ 3n4

+ 3n2)

(α2 + n2)(α2 + 9n2)
(1− e−α2π/n),

D8,1 = −
32n3α

π

(4n2
+ 1)

(4α2 + 25n2)(4α2 + 9n2)
(1+ e−α2π/n),

D8,3 = −
4αn3

π

(4n2
+ 1)

(α2 + n2)(α2 + 9n2)
(1− e−α2π/n),

D9,2 =
n2

2π

(−16α2(α2
+ 4)+ 15n4

− 40(5α2
− 6)n2)

(4α2 + 25n2)(4α2 + 9n2)

(1+ e−α2π/n),

D9,4 =
n

π

(−14α2n3
− nα4

− 4nα2
+ 3n5

+ 12n3)

(α2 + n2)(α2 + 9n2)

(1− e−α2π/n),

D10,2 = −
128n3α

π

(n2
+ 1)

(4α2 + 25n2)(4α2 + 9n2)
(1+ e−α2π/n),

D10,4 = −
16n3α

π

(n2
+ 1)

(α2 + n2)(α2 + 9n2)
(1− e−α2π/n).
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Supplementary material related to this article is
available online athttp://www.geosci-model-dev.net/7/
649/2014/gmd-7-649-2014-supplement.zip.
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